Thursday, July 17, 2025
No menu items!
HomeNatureGlobal terrestrial nitrogen fixation and its modification by agriculture

Global terrestrial nitrogen fixation and its modification by agriculture

  • Houlton, B. Z., Morford, S. L. & Dahlgren, R. A. Convergent evidence for widespread rock nitrogen sources in Earth’s surface environment. Science 360, 58–62 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B 368, 20130164 (2013).


    Google Scholar
     

  • Cleveland, C. C. et al. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem. Cycles 13, 623–645 (1999).

    CAS 

    Google Scholar
     

  • Davies-Barnard, T. & Friedlingstein, P. The global distribution of biological nitrogen fixation in terrestrial natural ecosystems. Global Biogeochem. Cycles 34, e2019GB006387 (2020).

    CAS 

    Google Scholar
     

  • Kou-Giesbrecht, S. et al. Evaluating nitrogen cycling in terrestrial biosphere models: a disconnect between the carbon and nitrogen cycles. Earth Syst. Dyn. 14, 767–795 (2023).


    Google Scholar
     

  • Davies-Barnard, T., Zaehle, S. & Friedlingstein, P. Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models. Biogeosciences 19, 3491–3503 (2022).

    CAS 

    Google Scholar
     

  • Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    PubMed 

    Google Scholar
     

  • Rockström, J. et al. Safe and just Earth system boundaries. Nature 619, 102–111 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedlingstein, P. et al. Global Carbon Budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).


    Google Scholar
     

  • Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 3, 525–532 (2010).

    CAS 

    Google Scholar
     

  • LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).

    PubMed 

    Google Scholar
     

  • Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).

    CAS 

    Google Scholar
     

  • Cleveland, C. C. et al. Patterns of new versus recycled primary production in the terrestrial biosphere. Proc. Natl Acad. Sci. USA 110, 12733–12737 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).

    CAS 

    Google Scholar
     

  • Mason, R. E. et al. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science 376, eabh3767 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Vitousek, P. M., Menge, D. N. L., Reed, S. C. & Cleveland, C. C. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos. Trans. R. Soc. B 368, 20130119 (2013).


    Google Scholar
     

  • Xu-Ri, & Prentice, I. C. Modelling the demand for new nitrogen fixation by terrestrial ecosystems. Biogeosciences 14, 2003–2017 (2017).

    CAS 

    Google Scholar
     

  • Ito, A. A historical meta-analysis of global terrestrial net primary productivity: are estimates converging? Glob. Change Biol. 17, 3161–3175 (2011).


    Google Scholar
     

  • Reis Ely, C. R. et al. A global dataset of terrestrial biological nitrogen fixation. Sci. Data (in the press).

  • Herridge, D. F., Giller, K. E., Jensen, E. S. & Peoples, M. B. Quantifying country-to-global scale nitrogen fixation for grain legumes: II. Coefficients, templates and estimates for soybean, groundnut and pulses. Plant Soil 474, 1–15 (2022).

    CAS 

    Google Scholar
     

  • Peoples, M. B., Giller, K. E., Jensen, E. S. & Herridge, D. F. Quantifying country-to-global scale nitrogen fixation for grain legumes: I. Reliance on nitrogen fixation of soybean, groundnut and pulses. Plant Soil 469, 1–14 (2021).

    CAS 

    Google Scholar
     

  • Galloway, J. N. et al. Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226 (2004).

    CAS 

    Google Scholar
     

  • Herridge, D. F., Peoples, M. B. & Boddey, R. M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 1–18 (2008).

    CAS 

    Google Scholar
     

  • Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Soumare, A. et al. Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants 9, 1011 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erisman, J. W. et al. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. B 368, 20130116 (2013).


    Google Scholar
     

  • Robertson, G. P. & Groffman, P. M. in Soil Microbiology, Ecology and Biochemistry 5th edn (eds Paul, E. A. & Frey, S. D.) 407–438 (Elsevier, 2024).

  • Carlsson, G. & Huss-Danell, K. Nitrogen fixation in perennial forage legumes in the field. Plant Soil 253, 353–372 (2003).

    CAS 

    Google Scholar
     

  • Crews, T. E. et al. Going where no grains have gone before: from early to mid-succession. Agric. Ecosyst. Environ. 223, 223–238 (2016).


    Google Scholar
     

  • Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Bruelheide, H. et al. sPlot – a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).


    Google Scholar
     

  • Piipponen, J. et al. Global trends in grassland carrying capacity and relative stocking density of livestock. Glob. Change Biol. 28, 3902–3919 (2022).

    CAS 

    Google Scholar
     

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Burrill, E. A. et al. The Forest Inventory and Analysis Database: Database Description and User Guide Version 9.1 for Phase 2 (US Department of Agriculture, Forest Service, 2023).

  • Rodriguez-Caballero, E. et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 11, 185–189 (2018).

    CAS 

    Google Scholar
     

  • Jovan, S. et al. User Guide for the National Forest Inventory and Analysis Lichen Database (Version 1.0) (US Department of Agriculture, Forest Service, 2020).

  • FAO. FAOSTAT. License: CC BY-NC-SA 3.0 IGO. https://www.fao.org/faostat/en/#data (2021).

  • Schimel, D. S., Braswell, B. H. & Parton, W. J. Equilibration of the terrestrial water, nitrogen, and carbon cycles. Proc. Natl Acad. Sci. USA 94, 8280–8283 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menge, D. N. L. et al. Why are nitrogen-fixing trees rare at higher compared to lower latitudes? Ecology 98, 3127–3140 (2017).

    PubMed 

    Google Scholar
     

  • Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).


    Google Scholar
     

  • Reed, S. C., Cleveland, C. C. & Townsend, A. R. Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu. Rev. Ecol. Evol. Syst. 42, 489–512 (2011).


    Google Scholar
     

  • Cleveland, C. C. et al. Exploring the role of cryptic nitrogen fixers in terrestrial ecosystems: a frontier in nitrogen cycling research. Ecosystems 25, 1653–1669 (2022).

    CAS 

    Google Scholar
     

  • Elbert, W. et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 5, 459–462 (2012).

    CAS 

    Google Scholar
     

  • Lawrence, D. M. et al. The Community Land Model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model Earth Syst. 11, 4245–4287 (2019).


    Google Scholar
     

  • Kou-Giesbrecht, S. & Arora, V. K. Representing the dynamic response of vegetation to nitrogen limitation via biological nitrogen fixation in the CLASSIC land model. Global Biochem. Cycles 36, e2022GB007341 (2022).

    CAS 

    Google Scholar
     

  • Schumann, U. & Huntrieser, H. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. Discuss. 7, 2623–2818 (2007).


    Google Scholar
     

  • Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    CAS 

    Google Scholar
     

  • Soper, F. M. et al. A roadmap for sampling and scaling biological nitrogen fixation in terrestrial ecosystems. Methods Ecol. Evol. 12, 1122–1137 (2021).


    Google Scholar
     

  • Winbourne, J. B. et al. A new framework for evaluating estimates of symbiotic nitrogen fixation in forests. Am. Nat. 192, 618–629 (2018).

    PubMed 

    Google Scholar
     

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedl, M. A. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V006. LP DAAC. https://doi.org/10.5067/MODIS/MCD12Q1.006 (2019).

  • Cummings, S. P., Humphry, D. R., Santos, S. R., Andrews, M. & James, E. K. The potential and pitfalls of exploiting nitrogen fixing bacteria in agricultural soils as a substitute for inorganic fertiliser. Environ. Biotechnol. 2, 1–10 (2006).


    Google Scholar
     

  • Urquiaga, S. et al. Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant Soil 356, 5–21 (2012).

    CAS 

    Google Scholar
     

  • Boddey, R. M., Polidoro, J. C., Resende, A. S., Alves, B. J. R. & Urquiaga, S. Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to sugar cane and other grasses. Aust. J. Plant Physiol. 28, 889–895 (2001).


    Google Scholar
     

  • IFA. Fertilizer use by crop. IFASTAT. https://www.ifastat.org/consumption/fertilizeruse-by-crop (2022).

  • Dynarski, K. A. & Houlton, B. Z. Nutrient limitation of terrestrial free-living nitrogen fixation. New Phytol. 217, 1050–1061 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. How do different nitrogen application levels and irrigation practices impact biological nitrogen fixation and its distribution in paddy system? Plant Soil 467, 329–344 (2021).

    CAS 

    Google Scholar
     

  • Peoples, M. B. et al. Factors affecting the potential contributions of N2 fixation by legumes in Australian pasture systems. Crop Pasture Sci. 63, 759–786 (2012).

    CAS 

    Google Scholar
     

  • Staccone, A. et al. A spatially explicit, empirical estimate of tree-based biological nitrogen fixation in forests of the United States. Global Biochem. Cycles 34, e2019GB006241 (2020).

    CAS 

    Google Scholar
     

  • Liao, W., Menge, D. N. L., Lichstein, J. W. & Ángeles-Pérez, G. Global climate change will increase the abundance of symbiotic nitrogen-fixing trees in much of North America. Glob. Change Biol. 23, 4777–4787 (2017).


    Google Scholar
     

  • Lepik, M. et al. The nitrogen‐fixing potential of plant communities depends on climate and land management. J. Biogeogr. 50, 591–601 (2023).


    Google Scholar
     

  • Zheng, M. et al. Effects of human disturbance activities and environmental change factors on terrestrial nitrogen fixation. Glob. Change Biol. 26, 6203–6217 (2020).


    Google Scholar
     

  • Zheng, M., Zhou, Z., Luo, Y., Zhao, P. & Mo, J. Global pattern and controls of biological nitrogen fixation under nutrient enrichment: a meta-analysis. Glob. Change Biol. 25, 3018–3030 (2019).


    Google Scholar
     

  • Ghimire, B. et al. Global albedo change and radiative cooling from anthropogenic land cover change, 1700 to 2005 based on MODIS, land use harmonization, radiative kernels, and reanalysis. Geophys. Res. Lett. 41, 9087–9096 (2014).


    Google Scholar
     

  • Running, S. W. & Zhao, M. MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500 m SIN Grid V061. NASA LP DAAC. https://lpdaac.usgs.gov/products/mod17a3hgfv061/ (2021).

  • Hijmans, R. J. terra: spatial data analysis. CRAN.R-project. https://CRAN.R-project.org/package=terra (2023).

  • Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Taylor, B. N., Chazdon, R. L. & Menge, D. N. L. Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests. Ecology 100, 1–13 (2019).


    Google Scholar
     

  • Wilcox, R. R. & Keselman, H. J. Modern robust data analysis methods: measures of central tendency. Psychol. Methods 8, 254–274 (2003).

    PubMed 

    Google Scholar
     

  • Hijmans, R. J. raster: geographic data analysis and modeling. CRAN.R-project https://CRAN.R-project.org/package=raster (2023).

  • Reis Ely, C. R. et al. Global gridded dataset of terrestrial biological nitrogen fixation across natural and agricultural biomes. US Geological Survey data release https://doi.org/10.5066/P13THKNR (2025).

  • Reis Ely, C. R. et al. A global dataset of terrestrial biological nitrogen fixation. US Geological Survey data release, https://doi.org/10.5066/P1MFBVHK (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments