Thursday, July 17, 2025
No menu items!
HomeNatureLiquid–liquid interfacial tension stabilized Li-metal batteries

Liquid–liquid interfacial tension stabilized Li-metal batteries

  • Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Fan, X. & Wang, C. High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375, 739–745 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ko, S. et al. Electrode potential influences the reversibility of lithium-metal anodes. Nat. Energy 7, 1217–1224 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Fan, X. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 882–890 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Meng, Y. S., Srinivasan, V. & Xu, K. Designing better electrolytes. Science 378, eabq3750 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Operando chemo-mechanical evolution in LiNi0.8Co0.1Mn0.1O2 cathode. Natl Sci. Rev. 11, nwae254 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S., Su, L., Mesnier, A., Cui, Z. & Manthiram, A. Cracking vs. surface reactivity in high-nickel cathodes for lithium-ion batteries. Joule 7, 2430–2444 (2023).

    CAS 

    Google Scholar
     

  • Pokharel, J. et al. Manipulating the diffusion energy barrier at the lithium metal electrolyte interface for dendrite-free long-life batteries. Nat. Commun. 15, 3085 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamada, Y., Wang, J., Ko, S., Watanabe, E. & Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Holoubek, J. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 7, 303–313 (2021).

    ADS 

    Google Scholar
     

  • Cheng, H. et al. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 7, 490–513 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Lu, Z. et al. Conformational isomerism breaks the electrolyte solubility limit and stabilizes 4.9 V Ni-rich layered cathodes. Nat. Commun. 15, 9108 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143, 18703–18713 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Weber, R. et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683–689 (2019).

    CAS 

    Google Scholar
     

  • Qiao, R. et al. Non-fluorinated electrolytes with micelle-like solvation for ultra-high energy density lithium metal batteries. Chem 11, 102306 (2025).

    CAS 

    Google Scholar
     

  • Zhang, S. et al. Oscillatory solvation chemistry for a 500 Wh kg−1 Li-metal pouch cell. Nat. Energy 9, 1285–1296 (2024).

    CAS 

    Google Scholar
     

  • Jie, Y. et al. Towards long-life 500 Wh kg−1 lithium metal pouch cells via compact ion-pair aggregate electrolytes. Nat. Energy 9, 987–998 (2024).

    CAS 

    Google Scholar
     

  • Huang, J. et al. Interphase‐designable additive‐enabled ethylene carbonate‐free electrolyte for wide‐temperature, long‐cycling, high‐voltage lithium metal batteries. Adv. Funct. Mater. 34, 2406215 (2024).

    CAS 

    Google Scholar
     

  • Tang, T. et al. Long‐lifespan 522 Wh kg−1 lithium metal pouch cell enabled by compound additives engineering. Angew. Chem. Int. Ed. 64, e202417471 (2024).


    Google Scholar
     

  • Su, H. et al. Achieving practical high-energy-density lithium metal batteries by a dual-anion regulated electrolyte. Adv. Mater. 35, 2301171 (2023).

    CAS 

    Google Scholar
     

  • Ou, X. et al. Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy. Nat. Commun. 13, 2319 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X. et al. PFAS-free locally concentrated ionic liquid electrolytes for lithium metal batteries. ACS Energy Lett. 9, 3049–3057 (2024).

    CAS 

    Google Scholar
     

  • Liu, X. et al. Locally concentrated ionic liquid electrolytes enabling low-temperature lithium metal batteries. Angew. Chem. Int. Ed. 62, e202305840 (2023).

    ADS 

    Google Scholar
     

  • Kupers, V., Kolek, M., Bieker, P., Winter, M. & Brunklaus, G. In situ 7Li-NMR analysis of lithium metal surface deposits with varying electrolyte compositions and concentrations. Phys. Chem. Chem. Phys. 21, 26084–26094 (2019).

    PubMed 

    Google Scholar
     

  • Gunnarsdóttir, A. B., Amanchukwu, C. V., Menkin, S. & Grey, C. P. Noninvasive in situ NMR study of “dead lithium” formation and lithium corrosion in full-cell lithium metal batteries. J. Am. Chem. Soc. 142, 20814–20827 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McLinden, M. O., Perkins, R. A., Lemmon, E. W. & Fortin, T. J. Thermodynamic properties of 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone: vapor pressure, (p, ρ, T) behavior, and speed of sound measurements, and an equation of state. J. Chem. Eng. Data 60, 3646–3659 (2015).

    CAS 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford CT, 2009).

  • Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Dodda, L. S., Vilseck, J. Z., Tirado-Rives, J. & Jorgensen, W. L. 1.14*CM1A-LBCC: localized bond-charge corrected CM1A charges for condensed-phase simulations. J. Phys. Chem. B 121, 3864–3870 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayly, C. I., Cieplak, P., Cornell, W. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993).

    CAS 

    Google Scholar
     

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    PubMed 

    Google Scholar
     

  • Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).

    ADS 

    Google Scholar
     

  • Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    ADS 
    CAS 

    Google Scholar
     

  • Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments