Saturday, July 12, 2025
No menu items!
HomeNatureCoenzyme Q headgroup intermediates can ameliorate a mitochondrial encephalopathy

Coenzyme Q headgroup intermediates can ameliorate a mitochondrial encephalopathy

  • Emmanuele, V. et al. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch. Neurol. 69, 978–983 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Awad, A. M. et al. Coenzyme Q10 deficiencies: pathways in yeast and humans. Essays Biochem. 62, 361–376 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mantle, D., Millichap, L., Castro-Marrero, J. & Hargreaves, I. P. Primary coenzyme Q10 deficiency: an update. Antioxidants 12, 1652 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stefely, J. A. & Pagliarini, D. J. Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends Biochem. Sci. 42, 824–843 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerra, R. M. & Pagliarini, D. J. Coenzyme Q biochemistry and biosynthesis. Trends Biochem. Sci. 48, 463–476 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banh, R. S. et al. The polar oxy-metabolome reveals the 4-hydroxymandelate CoQ10 synthesis pathway. Nature 597, 420–425 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinzii, C. M. & Hirano, M. Primary and secondary CoQ10 deficiencies in humans. Biofactors 37, 361–365 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mas, E. & Mori, T. A. Coenzyme Q10 and statin myalgia: what is the evidence? Curr. Atheroscler. Rep. 12, 407–413 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bentinger, M. et al. Stimulation of coenzyme Q synthesis. Biofactors 32, 99–111 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y., Oxer, D. & Hekimi, S. Mitochondrial function and lifespan of mice with controlled ubiquinone biosynthesis. Nat. Commun. 6, 6393 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Freyer, C. et al. Rescue of primary ubiquinone deficiency due to a novel COQ7 defect using 2,4-dihydroxybensoic acid. J. Med. Genet. 52, 779–873 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Pathogenicity of two COQ7 mutations and responses to 2,4‐dihydroxybenzoate bypass treatment. J. Cell. Mol. Med. 21, 2329–2343 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. & Hekimi, S. The efficacy of coenzyme Q10 treatment in alleviating the symptoms of primary coenzyme Q10 deficiency: a systematic review. J. Cell. Mol. Med. 26, 4635–4644 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández-del-Río, L. & Clarke, C. F. Coenzyme Q biosynthesis: an update on the origins of the benzenoid ring and discovery of new ring precursors. Metabolites 11, 385 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corral-Sarasa, J. et al. 4-Hydroxybenzoic acid rescues multisystemic disease and perinatal lethality in a mouse model of mitochondrial disease. Cell Rep. 43, 114148 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Husain, R. A. et al. Bi-allelic HPDL variants cause a neurodegenerative disease ranging from neonatal encephalopathy to adolescent-onset spastic paraplegia. Am. J. Hum. Genet. 107, 364–373 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Y. et al. HPDL deficiency causes a neuromuscular disease by impairing the mitochondrial respiration. J. Genet. Genomics 48, 727–736 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiessner, M. et al. Biallelic variants in HPDL cause pure and complicated hereditary spastic paraplegia. Brain 144, 1422–1434 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morgan, N. V. et al. Evidence that autosomal recessive spastic cerebral palsy-1 (CPSQ1) is caused by a missense variant in HPDL. Brain Commun. 3, fcab002 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh, S. G. et al. Biallelic variants in HPDL, encoding 4-hydroxyphenylpyruvate dioxygenase-like protein, lead to an infantile neurodegenerative condition. Genet. Med. 23, 524–533 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, H., Wei, Q., Luo, W.-J. & Wu, Z.-Y. Novel bi‐allelic HPDL variants cause hereditary spastic paraplegia in a Chinese patient. Clin. Genet. 100, 777–778 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Micule, I. et al. Case report: two families with HPDL related neurodegeneration. Front. Genet. 13, 780764 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mancuso, M., Orsucci, D., Volpi, L., Calsolaro, V. & Siciliano, G. Coenzyme Q10 in neuromuscular and neurodegenerative disorders. Curr. Drug Targets 11, 111–121 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • López, L. C. et al. Treatment of CoQ10 deficient fibroblasts with ubiquinone, CoQ analogs, and vitamin C: time- and compound-dependent effects. PLoS ONE 5, e11897 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dare, A. J. et al. Protection against renal ischemia–reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol. 5, 163–168 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albano, C. B., Muralikrishnan, D. & Ebadi, M. Distribution of coenzyme Q homologues in brain. Neurochem. Res. 27, 359–368 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tran, U. C. & Clarke, C. F. Endogenous synthesis of coenzyme Q in eukaryotes. Mitochondrion 7, S62–S71 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stefely, J. A. et al. Cerebellar ataxia and coenzyme Q deficiency through loss of unorthodox kinase activity. Mol. Cell 63, 608–620 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naini, A., Lewis, V. J., Hirano, M. & Dimauro, S. Primary coenzyme Q10 deficiency and the brain. Biofactors 18, 145–152 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Millen, K. J., Wurst, W., Herrup, K. & Joyner, A. L. Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development 120, 695–706 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hockberger, P. E., Tseng, H. Y. & Connor, J. A. Development of rat cerebellar Purkinje cells: electrophysiological properties following acute isolation and in long-term culture. J. Neurosci. 9, 2258–2271 (1989).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arancillo, M., White, J. J., Lin, T., Stay, T. L. & Sillitoe, R. V. In vivo analysis of Purkinje cell firing properties during postnatal mouse development. J. Neurophysiol. 113, 578–591 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meseguer-Henarejos, A.-B., Sánchez-Meca, J., López-Pina, J.-A. & Carles-Hernández, R. Inter- and intra-rater reliability of the Modified Ashworth Scale: a systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 54, 576–590 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Schüle, R. et al. The Spastic Paraplegia Rating Scale (SPRS): a reliable and valid measure of disease severity. Neurology 67, 430–434 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y.-C., Bohannon, R. W., Kapellusch, J., Garg, A. & Gershon, R. C. Dexterity as measured with the 9-Hole Peg Test (9-HPT) across the age span. J. Hand Ther. 28, 53–60 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • de Baptista, C. R. J. A. et al. Methods of 10‐meter walk test and repercussions for reliability obtained in typically developing children. Rehabil. Res. Pract. 2020, 4209812 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kojima, F. et al. A novel homozygous HPDL variant in Japanese siblings with autosomal recessive hereditary spastic paraplegia: case report and literature review. Neurogenetics 25, 149–156 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, Y. et al. Two novel heterozygous HPDL variants in a Chinese family with a neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities. Gene 934, 149018 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yogev, Y. et al. Limb girdle muscular disease caused by HMGCR mutation and statin myopathy treatable with mevalonolactone. Proc. Natl Acad. Sci. 120, e2217831120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pujol, J., Vendrell, P., Junqué, C., Martí‐Vilalta, J. L. & Capdevila, A. When does human brain development end? Evidence of corpus callosum growth up to adulthood. Ann. Neurol. 34, 71–75 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alecu, J. E. et al. Quantitative natural history modeling of HPDL-related disease based on cross-sectional data reveals genotype-phenotype correlations. Genet. Med. 27, 101349 (2025).

  • Lee, E. H. et al. HPDL variant type correlates with clinical disease onset and severity. Ann. Clin. Transl. Neurol. https://doi.org/10.1002/acn3.70047 (2025).

  • Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, G. et al. Metabolomics data for CoQ headgroup intermediate plasma concentrations and incorporation into CoQ. Zenodo https://doi.org/10.5281/zenodo.15361204 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments