Emmanuele, V. et al. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch. Neurol. 69, 978–983 (2012).
Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).
Awad, A. M. et al. Coenzyme Q10 deficiencies: pathways in yeast and humans. Essays Biochem. 62, 361–376 (2018).
Mantle, D., Millichap, L., Castro-Marrero, J. & Hargreaves, I. P. Primary coenzyme Q10 deficiency: an update. Antioxidants 12, 1652 (2023).
Stefely, J. A. & Pagliarini, D. J. Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends Biochem. Sci. 42, 824–843 (2017).
Guerra, R. M. & Pagliarini, D. J. Coenzyme Q biochemistry and biosynthesis. Trends Biochem. Sci. 48, 463–476 (2023).
Banh, R. S. et al. The polar oxy-metabolome reveals the 4-hydroxymandelate CoQ10 synthesis pathway. Nature 597, 420–425 (2021).
Quinzii, C. M. & Hirano, M. Primary and secondary CoQ10 deficiencies in humans. Biofactors 37, 361–365 (2011).
Mas, E. & Mori, T. A. Coenzyme Q10 and statin myalgia: what is the evidence? Curr. Atheroscler. Rep. 12, 407–413 (2010).
Bentinger, M. et al. Stimulation of coenzyme Q synthesis. Biofactors 32, 99–111 (2008).
Wang, Y., Oxer, D. & Hekimi, S. Mitochondrial function and lifespan of mice with controlled ubiquinone biosynthesis. Nat. Commun. 6, 6393 (2015).
Freyer, C. et al. Rescue of primary ubiquinone deficiency due to a novel COQ7 defect using 2,4-dihydroxybensoic acid. J. Med. Genet. 52, 779–873 (2015).
Wang, Y. et al. Pathogenicity of two COQ7 mutations and responses to 2,4‐dihydroxybenzoate bypass treatment. J. Cell. Mol. Med. 21, 2329–2343 (2017).
Wang, Y. & Hekimi, S. The efficacy of coenzyme Q10 treatment in alleviating the symptoms of primary coenzyme Q10 deficiency: a systematic review. J. Cell. Mol. Med. 26, 4635–4644 (2022).
Fernández-del-Río, L. & Clarke, C. F. Coenzyme Q biosynthesis: an update on the origins of the benzenoid ring and discovery of new ring precursors. Metabolites 11, 385 (2021).
Corral-Sarasa, J. et al. 4-Hydroxybenzoic acid rescues multisystemic disease and perinatal lethality in a mouse model of mitochondrial disease. Cell Rep. 43, 114148 (2024).
Husain, R. A. et al. Bi-allelic HPDL variants cause a neurodegenerative disease ranging from neonatal encephalopathy to adolescent-onset spastic paraplegia. Am. J. Hum. Genet. 107, 364–373 (2020).
Sun, Y. et al. HPDL deficiency causes a neuromuscular disease by impairing the mitochondrial respiration. J. Genet. Genomics 48, 727–736 (2021).
Wiessner, M. et al. Biallelic variants in HPDL cause pure and complicated hereditary spastic paraplegia. Brain 144, 1422–1434 (2021).
Morgan, N. V. et al. Evidence that autosomal recessive spastic cerebral palsy-1 (CPSQ1) is caused by a missense variant in HPDL. Brain Commun. 3, fcab002 (2021).
Ghosh, S. G. et al. Biallelic variants in HPDL, encoding 4-hydroxyphenylpyruvate dioxygenase-like protein, lead to an infantile neurodegenerative condition. Genet. Med. 23, 524–533 (2021).
Yu, H., Wei, Q., Luo, W.-J. & Wu, Z.-Y. Novel bi‐allelic HPDL variants cause hereditary spastic paraplegia in a Chinese patient. Clin. Genet. 100, 777–778 (2021).
Micule, I. et al. Case report: two families with HPDL related neurodegeneration. Front. Genet. 13, 780764 (2022).
Mancuso, M., Orsucci, D., Volpi, L., Calsolaro, V. & Siciliano, G. Coenzyme Q10 in neuromuscular and neurodegenerative disorders. Curr. Drug Targets 11, 111–121 (2010).
López, L. C. et al. Treatment of CoQ10 deficient fibroblasts with ubiquinone, CoQ analogs, and vitamin C: time- and compound-dependent effects. PLoS ONE 5, e11897 (2010).
Dare, A. J. et al. Protection against renal ischemia–reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol. 5, 163–168 (2015).
Albano, C. B., Muralikrishnan, D. & Ebadi, M. Distribution of coenzyme Q homologues in brain. Neurochem. Res. 27, 359–368 (2002).
Tran, U. C. & Clarke, C. F. Endogenous synthesis of coenzyme Q in eukaryotes. Mitochondrion 7, S62–S71 (2007).
Stefely, J. A. et al. Cerebellar ataxia and coenzyme Q deficiency through loss of unorthodox kinase activity. Mol. Cell 63, 608–620 (2016).
Naini, A., Lewis, V. J., Hirano, M. & Dimauro, S. Primary coenzyme Q10 deficiency and the brain. Biofactors 18, 145–152 (2003).
Millen, K. J., Wurst, W., Herrup, K. & Joyner, A. L. Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development 120, 695–706 (1994).
Hockberger, P. E., Tseng, H. Y. & Connor, J. A. Development of rat cerebellar Purkinje cells: electrophysiological properties following acute isolation and in long-term culture. J. Neurosci. 9, 2258–2271 (1989).
Arancillo, M., White, J. J., Lin, T., Stay, T. L. & Sillitoe, R. V. In vivo analysis of Purkinje cell firing properties during postnatal mouse development. J. Neurophysiol. 113, 578–591 (2015).
Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868 (2016).
Meseguer-Henarejos, A.-B., Sánchez-Meca, J., López-Pina, J.-A. & Carles-Hernández, R. Inter- and intra-rater reliability of the Modified Ashworth Scale: a systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 54, 576–590 (2018).
Schüle, R. et al. The Spastic Paraplegia Rating Scale (SPRS): a reliable and valid measure of disease severity. Neurology 67, 430–434 (2006).
Wang, Y.-C., Bohannon, R. W., Kapellusch, J., Garg, A. & Gershon, R. C. Dexterity as measured with the 9-Hole Peg Test (9-HPT) across the age span. J. Hand Ther. 28, 53–60 (2015).
de Baptista, C. R. J. A. et al. Methods of 10‐meter walk test and repercussions for reliability obtained in typically developing children. Rehabil. Res. Pract. 2020, 4209812 (2020).
Kojima, F. et al. A novel homozygous HPDL variant in Japanese siblings with autosomal recessive hereditary spastic paraplegia: case report and literature review. Neurogenetics 25, 149–156 (2024).
Ma, Y. et al. Two novel heterozygous HPDL variants in a Chinese family with a neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities. Gene 934, 149018 (2025).
Yogev, Y. et al. Limb girdle muscular disease caused by HMGCR mutation and statin myopathy treatable with mevalonolactone. Proc. Natl Acad. Sci. 120, e2217831120 (2023).
Pujol, J., Vendrell, P., Junqué, C., Martí‐Vilalta, J. L. & Capdevila, A. When does human brain development end? Evidence of corpus callosum growth up to adulthood. Ann. Neurol. 34, 71–75 (1993).
Alecu, J. E. et al. Quantitative natural history modeling of HPDL-related disease based on cross-sectional data reveals genotype-phenotype correlations. Genet. Med. 27, 101349 (2025).
Lee, E. H. et al. HPDL variant type correlates with clinical disease onset and severity. Ann. Clin. Transl. Neurol. https://doi.org/10.1002/acn3.70047 (2025).
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
Shi, G. et al. Metabolomics data for CoQ headgroup intermediate plasma concentrations and incorporation into CoQ. Zenodo https://doi.org/10.5281/zenodo.15361204 (2025).