Thursday, July 3, 2025
No menu items!
HomeNatureA foundation model to predict and capture human cognition

A foundation model to predict and capture human cognition

  • Anderson, J. The Architecture of Cognition (Harvard Univ. Press, 1983).

  • Newell, A. Unified Theories of Cognition (Harvard Univ. Press, 1990).

  • Lake, B. M., Ullman, T. D., Tenenbaum, J. B. & Gershman, S. J. Building machines that learn and think like people. Behav. Brain Sci. 40, e253 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. Human-level concept learning through probabilistic program induction. Science 350, 1332–1338 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Goddu, M. K. & Gopnik, A. The development of human causal learning and reasoning. Nat. Rev. Psychol. https://doi.org/10.1038/s44159-024-00300-5 (2024).

  • Chu, J. & Schulz, L. E. Play, curiosity, and cognition. Annu. Rev. Dev. Psychol. 2, 317–343 (2020).

    Article 

    Google Scholar
     

  • Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kahneman, D. & Tversky, A. in Handbook of the Fundamentals of Financial Decision Making (eds MacLean, L. C. & Ziemba, W. T.) 99–127 (World Scientific, 2013).

  • Riveland, R. & Pouget, A. Natural language instructions induce compositional generalization in networks of neurons. Nat. Neurosci. 27, 988–999 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bommasani, R. et al. On the opportunities and risks of foundation models. Preprint at https://arxiv.org/abs/2108.07258 (2021).

  • Grattafiori, A. et al. The Llama 3 herd of models. Preprint at https://arxiv.org/abs/2407.21783 (2024).

  • Binz, M. & Schulz, E. Using cognitive psychology to understand GPT-3. Proc. Natl Acad. Sci. USA 120, e2218523120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Binz, M. & Schulz, E. Turning large language models into cognitive models. In Proc. 12th International Conference on Learning Representations (ICLR, 2024).

  • Hofman, J. M. et al. Integrating explanation and prediction in computational social science. Nature 595, 181–188 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rocca, R. & Yarkoni, T. Putting psychology to the test: rethinking model evaluation through benchmarking and prediction. Adv. Methods Pract. Psychol. Sci. https://doi.org/10.1177/25152459211026864 (2021).

  • Dettmers, T., Pagnoni, A., Holtzman, A. & Zettlemoyer, L. QLORA: efficient finetuning of quantized LLMs. In Proc. Advances in Neural Information Processing Systems 36 (eds Oh, A. et al.) (NeurIPS, 2023).

  • Nosofsky, R. M. in Formal Approaches in Categorization (eds Pothos, E. M. & Wills, A. J.) 18–39 (Cambridge Univ. Press, 2011).

  • Peterson, J. C., Bourgin, D. D., Agrawal, M., Reichman, D. & Griffiths, T. L. Using large-scale experiments and machine learning to discover theories of human decision-making. Science 372, 1209–1214 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P. & Dolan, R. J. Model-based influences on humans’ choices and striatal prediction errors. Neuron 69, 1204–1215 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson, R. C., Geana, A., White, J. M., Ludvig, E. A. & Cohen, J. D. Humans use directed and random exploration to solve the explore–exploit dilemma. J. Exp. Psychol. Gen. 143, 2074–2081 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palminteri, S., Wyart, V. & Koechlin, E. The importance of falsification in computational cognitive modeling. Trends Cogn. Sci. 21, 425–433 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • van Baar, J. M., Nassar, M. R., Deng, W. & FeldmanHall, O. Latent motives guide structure learning during adaptive social choice. Nat. Hum. Behav. 6, 404–414 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Feher da Silva, C. & Hare, T. A. Humans primarily use model-based inference in the two-stage task. Nat. Hum. Behav. 4, 1053–1066 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kool, W., Cushman, F. A. & Gershman, S. J. When does model-based control pay off? PLoS Comput. Biol. 12, e1005090 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dubois, M. & Hauser, T. U. Value-free random exploration is linked to impulsivity. Nat. Commun. 13, 4542 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jansen, R. A., Rafferty, A. N. & Griffiths, T. L. A rational model of the Dunning–Kruger effect supports insensitivity to evidence in low performers. Nat. Hum. Behav. 5, 756–763 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Awad, E. et al. The Moral Machine experiment. Nature 563, 59–64 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Akata, E. et al. Playing repeated games with large language models. Nat. Hum. Behav. https://doi.org/10.1038/s41562-025-02172-y (2025).

  • Demircan, C. et al. Evaluating alignment between humans and neural network representations in image-based learning tasks. In Proc. Advances in Neural Information Processing Systems 37 (eds Globerson, A. et al.) (NeurIPS, 2024).

  • Singh, M., Richie, R. & Bhatia, S. Representing and predicting everyday behavior. Comput. Brain Behav. 5, 1–21 (2022).

    Article 

    Google Scholar
     

  • Xu, H. A., Modirshanechi, A., Lehmann, M. P., Gerstner, W. & Herzog, M. H. Novelty is not surprise: human exploratory and adaptive behavior in sequential decision-making. PLoS Comput. Biol. 17, e1009070 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hick, W. E. On the rate of gain of information. Q. J. Exp. Psychol. 4, 11–26 (1952).

    Article 

    Google Scholar
     

  • Coda-Forno, J., Binz, M., Wang, J. X. & Schulz, E. CogBench: a large language model walks into a psychology lab. Proc. Mach. Learn. Res. 235, 9076–9108 (2024).

  • Kipnis, A., Voudouris, K., Schulze Buschoff, L. M. & Schulz, E. metabench – a sparse benchmark of reasoning and knowledge in large language models. In Proc. 13th International Conference on Learning Representations (ICLR, 2025).

  • Yamins, D. L. K. et al. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl Acad. Sci. USA 111, 8619–8624 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schrimpf, M. et al. The neural architecture of language: integrative modeling converges on predictive processing. Proc. Natl Acad. Sci. USA 118, e2105646118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feher da Silva, C., Lombardi, G., Edelson, M. & Hare, T. A. Rethinking model-based and model-free influences on mental effort and striatal prediction errors. Nat. Hum. Behav. 7, 956–969 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Tuckute, G. et al. Driving and suppressing the human language network using large language models. Nat. Hum. Behav. 8, 544–561 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Cochran, W. G. The combination of estimates from different experiments. Biometrics 10, 101–129 (1954).

    Article 

    Google Scholar
     

  • DeepSeek-AI et al. DeepSeek-R1: incentivizing reasoning capability in LLMs via reinforcement learning. Preprint at https://arxiv.org/abs/2501.12948 (2025).

  • Hilbig, B. E. & Moshagen, M. Generalized outcome-based strategy classification: comparing deterministic and probabilistic choice models. Psychon. Bull. Rev. 21, 1431–1443 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Agrawal, M., Peterson, J. C. & Griffiths, T. L. Scaling up psychology via scientific regret minimization. Proc. Natl Acad. Sci. USA 117, 8825–8835 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rigoux, L., Stephan, K. E., Friston, K. J. & Daunizeau, J. Bayesian model selection for group studies − revisited. Neuroimage https://doi.org/10.1016/j.neuroimage.2013.08.065 (2014).

  • Binz, M., Gershman, S. J., Schulz, E. & Endres, D. Heuristics from bounded meta-learned inference. Psychol. Rev. 129, 1042–1077 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Musslick, S. et al. Automating the practice of science: opportunities, challenges, and implications. Proc. Natl. Acad. Sci. USA 122, e2401238121 (2025).

  • Rmus, M., Jagadish, A. K., Mathony, M., Ludwig, T. & Schulz, E. Generating computational cognitive models using large language models. Preprint at https://arxiv.org/abs/2502.00879 (2025).

  • Dillion, D., Tandon, N., Gu, Y. & Gray, K. Can AI language models replace human participants? Trends Cogn. Sci. 27, 597–600 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Huben, R., Cunningham, H., Smith, L. R., Ewart, A. & Sharkey, L. Sparse autoencoders find highly interpretable features in language models. In Proc. 12th International Conference on Learning Representations (ICLR, 2024).

  • Chefer, H., Gur, S. & Wolf, L. Transformer interpretability beyond attention visualization. In Proc. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 782–791 (IEEE, 2021).

  • Vaswani, A. et al. Attention is all you need. In Proc. Advances in Neural Information Processing Systems 30 (eds Guyon, I. et al.) (NeurIPS, 2017).

  • Zador, A. et al. Catalyzing next-generation artificial intelligence through NeuroAI. Nat. Commun. 14, 1597 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruggeri, K. et al. The globalizability of temporal discounting. Nat. Hum. Behav. 6, 1386–1397 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wulff, D. U., Mergenthaler-Canseco, M. & Hertwig, R. A meta-analytic review of two modes of learning and the description-experience gap. Psychol. Bull. 144, 140–176 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Frey, R., Pedroni, A., Mata, R., Rieskamp, J. & Hertwig, R. Risk preference shares the psychometric structure of major psychological traits. Sci. Adv. 3, e1701381 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enkavi, A. Z. et al. Large-scale analysis of test–retest reliabilities of self-regulation measures. Proc. Natl Acad. Sci. USA 116, 5472–5477 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henrich, J., Heine, S. J. & Norenzayan, A. Most people are not WEIRD. Nature 466, 29 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schrimpf, M. et al. Integrative benchmarking to advance neurally mechanistic models of human intelligence. Neuron 108, 413–423 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poldrack, R. A. et al. The past, present, and future of the brain imaging data structure (BIDS). Imaging Neurosci. 2, 1–19 (2024).

    Article 

    Google Scholar
     

  • Schulze Buschoff, L. M., Akata, E., Bethge, M. & Schulz, E. Visual cognition in multimodal large language models. Nat. Mach. Intell. https://doi.org/10.1038/s42256-024-00963-y (2025).

  • Vere, S. A. A cognitive process shell. Behav. Brain Sci. 15, 460–461 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. In Proc. 7th International Conference on Learning Representations (ICLR, 2019).

  • Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fonov, V. S., Evans, A. C., McKinstry, R. C., Almli, C. R. & Collins, D. L. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. Neuroimage 47, S102 (2009).

    Article 

    Google Scholar
     

  • Friston, K. J., Ashburner, J. T., Kiebel, S. J., Nichols, T. E. & Penny, W. D. (eds) Statistical Parametric Mapping: The Analysis of Functional Brain Images (Elsevier, 2011).

  • Gau, R. nilearn. GitHub https://github.com/nilearn/nilearn (2024).

  • Yax, N., Oudeyer, P.-Y. & Palminteri, S. Assessing contamination in large language models: introducing the LogProber method. Preprint at https://arxiv.org/abs/2408.14352 (2024).

  • Warner, B. et al. Smarter, better, faster, longer: a modern bidirectional encoder for fast, memory efficient, and long context finetuning and inference. Preprint at https://arxiv.org/abs/2412.13663 (2024).

  • Wang, Z. et al. HelpSteer2-Preference: complementing ratings with preferences. In Proc. 13th International Conference on Learning Representations (ICLR, 2025).

  • Teknium, R., Quesnelle, J. & Guang, C. Hermes 3 technical report. Preprint at https://arxiv.org/abs/2408.11857 (2024).

  • Lin, S., Hilton, J. & Evans, O. TruthfulQA: measuring how models mimic human falsehoods. In Proc. 60th Annual Meeting of the Association for Computational Linguistics (eds Muresan, S. et al.) 3214–3252 (Association for Computational Linguistics, 2022).

  • RELATED ARTICLES

    Most Popular

    Recent Comments