Thursday, July 3, 2025
No menu items!
HomeNatureCarbonate formation and fluctuating habitability on Mars

Carbonate formation and fluctuating habitability on Mars

  • Hu, R., Kass, D. M., Ehlmann, B. L. & Yung, Y. L. Tracing the fate of carbon and the atmospheric evolution of Mars. Nat. Commun. 6, 10003 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Milliken, R. E., Grotzinger J. P. & Thomson B. J. Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater. Geophys. Res. Lett. 37, L04201 (2010).

  • Kite, E. S. & Conway, S. Geological evidence for multiple climate transitions on Early Mars. Nat. Geosci. 17, 10–19 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tutolo, B. M. et al. Carbonates identified by the Curiosity rover indicate a carbon cycle operated on ancient Mars. Science 388, 292–297 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kahn, R. The evolution of CO2 on Mars. Icarus 62, 175–190 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, C.-T. A. et al. in Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 313–337 (Cambridge Univ. Press, 2020).

  • Walker, J. C., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long‐term stabilization of Earth’s surface temperature. J. Geophys. Res. Oceans 86, 9776–9782 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108–128 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McKay, C. P. & Nedell, S. S. Are there carbonate deposits in the Valles Marineris, Mars? Icarus 73, 142–148 (1988).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Catling, D. C. A chemical model for evaporites on early Mars: possible sedimentary tracers of the early climate and implications for exploration. J. Geophys. Res. Planets 104, 16453–16469 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ehlmann, B. L. et al. Orbital identification of carbonate-bearing rocks on Mars. Science 322, 1828–1832 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bandfield, J. L., Glotch, T. D. & Christensen, P. R. Spectroscopic identification of carbonate minerals in the Martian dust. Science 301, 1084–1087 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Edwards, C. S. & Ehlmann, B. L. Carbon sequestration on Mars. Geology 43, 863–866 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bullock, M. A. & Moore, J. M. Atmospheric conditions on early Mars and the missing layered carbonates. Geophys. Res. Lett. 34, L19201 (2007).

  • Schieber, J. et al. Mars is a mirror—understanding the Pahrump Hills mudstones from a perspective of Earth analogues. Sedimentology 69, 2371–2435 (2022).

    Article 

    Google Scholar
     

  • Thorpe, M. T. et al. Mars Science Laboratory CheMin data from the Glen Torridon region and the significance of lake‐groundwater interactions in interpreting mineralogy and sedimentary history. J. Geophys. Res. Planets 127, e2021JE007099 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thomas, T. B., Hu, R. & Lo, D. Y. Constraints on the size and composition of the ancient Martian atmosphere from coupled CO2–N2–Ar isotopic evolution models. Planet. Sci. J. 4, 41 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Clavé, E. et al. Carbonation of mafic rocks in the Margin Unit, Jezero Crater, Mars. In Tenth International Conference on Mars Vol. 3007, 3161 (Lunar and Planetary Institute, 2024).

  • Meyer, M. J. et al. Geological context and significance of the clay-sulfate transition region in Mount Sharp, Gale Crater, Mars: an integrated assessment based on orbiter and rover data. Geol. Soc. Am. Bull. https://doi.org/10.1130/B37355.1 (2024).

  • Milliken, R. E., Ewing, R. C., Fischer, W. W. & Hurowitz, J. Wind‐blown sandstones cemented by sulfate and clay minerals in Gale Crater, Mars. Geophys. Res. Lett. 41, 1149–1154 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grotzinger, J. P. & Milliken, R. E. in Sedimentary Geology of Mars Special Publication 102 (eds. Grotzinger J. P. & Milliken R. E.) 1–48 (Society for Sedimentary Geology, 2012).

  • Ehlmann, B. L. et al. Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53–60 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, B. C., Milliken, R. E., Lewis, K. W. & Collins, G. S. Impact generated porosity in Gale Crater and implications for the density of sedimentary rocks in lower Aeolis Mons. Icarus 366, 114539 (2021).

    Article 

    Google Scholar
     

  • Horgan, B. H., Anderson, R. B., Dromart, G., Amador, E. S. & Rice, M. S. The mineral diversity of Jezero Crater: evidence for possible lacustrine carbonates on Mars. Icarus 339, 113526 (2020).

    Article 

    Google Scholar
     

  • Hoehler, T. M. An energy balance concept for habitability. Astrobiology 7, 824–838 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grotzinger, J. P. et al. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343, 1242777 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bibring, J. P. et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, A. Y., Kite, E. S. & Keating, K. The age and erosion rate of young sedimentary rock on Mars. Planet. Sc. J. 3, 246 (2022).

    Article 

    Google Scholar
     

  • Lewis, K. W. & Aharonson, O. Occurrence and origin of rhythmic sedimentary rocks on Mars. J. Geophys. Res. Planets 119, 1432–1457 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hurowitz, J. A. et al. Redox stratification of an ancient lake in Gale Crater, Mars. Science 356, eaah6849 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Manning, C. V., McKay, C. P. & Zahnle, K. J. Thick and thin models of the evolution of carbon dioxide on Mars. Icarus 180, 38–59 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Phillips, R. J. et al. Massive CO2 ice deposits sequestered in the south polar layered deposits of Mars. Science 332, 838–841 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Laskar, J. et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Ramstad, R., Barabash, S., Futaana, Y., Nilsson, H. & Holmström, M. Ion escape from Mars through time: an extrapolation of atmospheric loss based on 10 years of Mars Express measurements. J. Geophys. Res. Planets 123, 3051–3060 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lo, D. Y., Yelle, R. V., Lillis, R. J. & Deighan, J. I. Carbon photochemical escape rates from the modern Mars atmosphere. Icarus 360, 114371 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kite, E. S., Halevy, I., Kahre, M. A., Wolff, M. J. & Manga, M. Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound. Icarus 223, 181–210 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Andrews‐Hanna, J. C., Zuber M. T., Arvidson R. E. & Wiseman S. M. Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. J. Geophys. Res. Planets 115, E06002 (2010).

  • Stanley, B. D., Hirschmann, M. M. & Withers, A. C. Solubility of COH volatiles in graphite-saturated martian basalts. Geochim. Cosmochim. Acta 129, 54–76 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kite, E. S. et al. Changing spatial distribution of water flow charts major change in Mars’s greenhouse effect. Sci. Adv. 8, eabo5894 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madeleine, J. B. et al. Recent ice ages on Mars: the role of radiatively active clouds and cloud microphysics. Geophys. Res. Lett. 41, 4873–4879 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Salvatore, M. R. & Christensen, P. R. Evidence for widespread aqueous sedimentation in the northern plains of Mars. Geology 42, 423–426 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Madeleine, J.-B. et al. Amazonian northern mid-latitude glaciation on Mars: a proposed climate scenario. Icarus 203, 390–405 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Booth, M. C. & Kieffer, H. H. Carbonate formation in Marslike environments. J. Geophys. Res. Solid Earth 83, 1809–1815 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Stephens, S. K. Carbonate Formation on Mars: Experiments and Models. PhD dissertation, California Institute of Technology; https://doi.org/10.7907/PSFY-MZ22 (1995).

  • Bristow, T. F. et al. Low Hesperian pCO2 constrained from in situ mineralogical analysis at Gale Crater, Mars. Proc. Natl Acad. Sci. USA 114, 2166–2170 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boynton, W. V. et al. Evidence for calcium carbonate at the Mars Phoenix landing site. Science 325, 61–64 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Warner, N. H., Sowe, M., Gupta, S., Dumke, A. & Goddard, K. Fill and spill of giant lakes in the eastern Valles Marineris region of Mars. Geology 41, 675–678 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Williams, K. E., Toon, O. B., Heldmann, J. L. & Mellon, M. T. Ancient melting of mid-latitude snowpacks on Mars as a water source for gullies. Icarus 200, 418–425 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Warren, A. O., Wilson, S. A., Howard, A., Noblet, A. & Kite, E. S. Multiple overspill flood channels from young craters require surface melting and hundreds of meters of midlatitude ice late in Mars’s history. Planet. Sci. J. 5, 174 (2024).

    Article 

    Google Scholar
     

  • Goudge, T. A., Fassett, C. I., Head, J. W., Mustard, J. F. & Aureli, K. L. Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy. Geology 44, 419–422 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Onstott, T. C. et al. Paleo-rock-hosted life on Earth and the search on Mars: a review and strategy for exploration. Astrobiology 19, 1230–1262 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franz, H. B. et al. Indigenous and exogenous organics and surface–atmosphere cycling inferred from carbon and oxygen isotopes at Gale Crater. Nat. Astron. 4, 526 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Martin, P. E. et al. A two‐step K–Ar experiment on Mars: dating the diagenetic formation of jarosite from Amazonian groundwaters. J. Geophys. Res. Planets 122, 2803–2818 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Halevy, I. & Schrag, D. P. Sulfur dioxide inhibits calcium carbonate precipitation: implications for early Mars and Earth. Geophys. Res. Lett. 36, L23201 (2009).

  • Morris, R. V. et al. Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science 329, 421–424 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mischna, M. A., Baker, V., Milliken, R., Richardson, M. & Lee, C. Effects of obliquity and water vapor/trace gas greenhouses in the early Martian climate. J. Geophys. Res. Planets 118, 560–576 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ingersoll, A. P. Mars: occurrence of liquid water. Science 168, 972–973 (1970).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stanley, B. D., Hirschmann, M. M. & Withers, A. C. CO2 solubility in Martian basalts and Martian atmospheric evolution. Geochim. Cosmochim. Acta 75, 5987–6003 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Graham, R. J. High pCO2 reduces sensitivity to CO2 perturbations on temperate, Earth-like planets throughout most of habitable zone. Astrobiology 21, 1406–1420 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wordsworth, R. D., Kerber, L., Pierrehumbert, R. T., Forget, F., & Head, J. W. Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3-D climate model. J. Geophys. Res. Planets 120, 1201–1219 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Mansfield, M., Kite, E. S. & Mischna, M. A. Effect of Mars atmospheric loss on snow melt potential in a 3.5 Gyr Mars climate evolution model. J. Geophys. Res. Planets 123, 794–806 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arvidson, R. E. et al. Spirit Mars rover mission: overview and selected results from the northern Home Plate Winter Haven to the side of Scamander Crater. J. Geophys. Res. Planets 115, E00F03 (2010).

  • Hausrath, E. M. et al. An examination of soil crusts on the floor of Jezero Crater, Mars. J. Geophys. Res. Planets 128, e2022JE007433 (2023).

  • Squyres, S. W. et al. Rocks of the Columbia Hills. J. Geophys. Res. Planets 111, E02S11 (2006).

  • Chojnacki, M. et al. Ancient Martian aeolian sand dune deposits recorded in the stratigraphy of Valles Marineris and implications for past climates. J. Geophys. Res. Planets 125, e2020JE006510 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Edgett, K. S. & Sarkar, R. Recognition of sedimentary rock occurrences in satellite and aerial images of other worlds—insights from Mars. Remote Sens. 13, 4296 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Allen, P. A. & Allen, J. R. Basin Analysis: Principles and Applications (Blackwell Publishing, 2005).

  • Kahre, M. A. et al. in The Atmosphere and Climate of Mars (eds Haberle, R. et al.) 295–337 (Cambridge Univ. Press, 2017).

  • Bridges, N. T. & Muhs, D. R. in Sedimentary Geology of Mars Special Publication 102 (eds Grotzinger J. & Milliken R.) 169–182 (Society for Sedimentary Geology, 2012).

  • Bridges, N. T. et al. Planet-wide sand motion on Mars. Geology 40, 31–34 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Bradley, B. A., Sakimoto, S. E., Frey, H. & Zimbelman, J. R. Medusae Fossae formation: new perspectives from Mars global surveyor. J. Geophys. Res. Planets 107, 2-1–2-17 (2002).

    Article 

    Google Scholar
     

  • Hynek, B. M. & Di Achille, G. Geologic Map of Meridiani Planum, Mars SI-3356 (US Geological Survey, 2017).

  • Tanaka, K. L. et al. Geologic Map of Mars SIM-3292 (US Geological Survey, 2014).

  • Bennett, K. A. & Bell, J. F. III A global survey of Martian central mounds: central mounds as remnants of previously more extensive large-scale sedimentary deposits. Icarus 264, 331–341 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Michael, G. G. Planetary surface dating from crater size–frequency distribution measurements: multiple resurfacing episodes and differential isochron fitting. Icarus 226, 885–890 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Salese, F. et al. Sustained fluvial deposition recorded in Mars’ Noachian stratigraphic record. Nat. Commun. 11, 2067 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bandfield, J. L., Edwards, C. S., Montgomery, D. R. & Brand, B. D. The dual nature of the martian crust: young lavas and old clastic materials. Icarus 222, 188–199 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Stack, K. M. Reconstructing Past Depositional and Diagenetic Processes through Quantitative Stratigraphic Analysis of the Martian Sedimentary Rock Record. PhD thesis, California Institute of Technology (2015).

  • Milliken, R. E., Fischer, W. W. & Hurowitz, J. A. Missing salts on early Mars. Geophys. Res. Lett. 36, L11202 (2009).

  • Smith, D. E. et al. Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. Planets 106, 23689 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Edgett, K. S. & Malin, M. C. Martian sedimentary rock stratigraphy: outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra. Geophys. Res. Lett. 29, 32-1–32-4 (2002).

    Article 

    Google Scholar
     

  • Kite, E. S., Lucas, A. & Fassett, C. I. Pacing early Mars river activity: embedded craters in the Aeolis Dorsa region imply river activity spanned (1–20) Myr. Icarus 225, 850–855 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kite, E. S., Sneed, J., Mayer, D. P. & Wilson, S. A. Persistent or repeated surface habitability on Mars during the late Hesperian‐Amazonian. Geophys. Res. Lett. 44, 3991–3999 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Kite, E. S. & Noblet, A. High and dry: billion‐year trends in the aridity of river‐forming climates on Mars. Geophys. Res. Lett. 49, e2022GL101150 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Annex, A. M. & Lewis, K. W. Constraining the duration and ages of stratigraphic unconformities on Mars using exhumed craters. J. Geophys. Res. Planets 129, e2023JE008073 (2024).

    Article 

    Google Scholar
     

  • Grant, J. A. & Wilson S. A. Late alluvial fan formation in southern Margaritifer Terra, Mars. Geophys. Res. Lett. 38, L08201 (2011).

  • Holo, S. J., Kite, E. S., Wilson, S. A. & Morgan, A. M. The timing of alluvial fan formation on Mars. Planet. Sci. J. 2, 210 (2021).

    Article 

    Google Scholar
     

  • Foley, K. K., Lyons, W. B., Barrett, J. E. & Virginia, R. A. in Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates (eds Alonso-Zarza, A. M. & Tanner, L. H.) 89–104 (Geological Society of America, 2006).

  • Head, J. W. III, Kreslavsky, M. A. & Pratt, S. Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian period. J. Geophys. Res. Planets 107, 3-1–3-29 (2002).

    Article 

    Google Scholar
     

  • Kite, E. S., Matsuyama, I., Manga, M., Perron, J. T. & Mitrovica, J. X. True polar wander driven by late-stage volcanism and the distribution of paleopolar deposits on Mars. Earth Planet. Sci. Lett. 280, 254–267 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jakosky, B. M. & Carr, M. H. Possible precipitation of ice at low latitudes of Mars during periods of high obliquity. Nature 315, 559–561 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mischna, M. A., Richardson, M. I., Wilson, R. J. & McCleese, D. J. On the orbital forcing of Martian water and CO2 cycles: a general circulation model study with simplified volatile schemes. J. Geophys. Res. Planets 108, 5062 (2003).

  • Steele, L. J., Balme, M. R. & Lewis, S. R. Regolith-atmosphere exchange of water in Mars’ recent past. Icarus 284, 233–248 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Kerber, L., Head, J. W., Madeleine, J.-B., Forget, F. & Wilson, L. The dispersal of pyroclasts from ancient explosive volcanoes on Mars: implications for the friable layered deposits. Icarus 219, 358–381 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Turbet, M. & Forget, F. The paradoxes of the Late Hesperian Mars ocean. Sci. Rep. 9, 5717 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Armstrong, J. C., Leovy, C. B. & Quinn, T. A 1 Gyr climate model for Mars: new orbital statistics and the importance of seasonally resolved polar processes. Icarus 171, 255–271 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Holo, S. J., Kite, E. S. & Robbins, S. J. Mars obliquity history constrained by elliptic crater orientations. Earth Planet. Sci. Lett. 496, 206–214 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Catling, D. C. in Encyclopedia of Paleoclimatology and Ancient Environments (ed. Gornitz, V.) 66–75 (Springer, 2009).

  • Mahaffy, P. R. et al. The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science 347, 412–414 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bahcall, J. N., Pinsonneault, M. H. & Basu, S. Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 555, 990 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gil-Lozano, C. et al. The key role of bedrock composition in the formation of carbonates on Mars. Geochem. Perspect. Lett. 28, 54–59 (2024).

    Article 

    Google Scholar
     

  • Dong, C. et al. Modeling Martian atmospheric losses over time: implications for exoplanetary climate evolution and habitability. Astrophys. J. Lett. 859, L14 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Jakosky, B. M. & Edwards, C. S. Inventory of CO2 available for terraforming Mars. Nat. Astron. 2, 634–639 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Buhler, P. B. & Piqueux, S. Obliquity‐driven CO2 exchange between Mars’ atmosphere, regolith, and polar cap. J. Geophys. Res. Planets 126, e2020JE006759 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ueno, Y. et al. Synthesis of 13C-depleted organic matter from CO in a reducing early Martian atmosphere. Nat. Geosci. 17, 503–507 (2024).

  • Koyama, S. et al. Stable carbon isotope evolution of formaldehyde on early Mars. Sci. Rep. 14, 21214 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stern, J. C. et al. Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars. Proc. Natl Acad. Sci. USA 119, e2201139119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Citron, R. I., Manga, M. & Hemingway, D. J. Timing of oceans on Mars from shoreline deformation. Nature 555, 643–646 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Khuller, A. R., Christensen, P. R. & Warren, S. G. Spectral albedo of dusty Martian H2O snow and ice. J. Geophys. Res. Planets 126, e2021JE006910 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Clow, G. D. Generation of liquid water on Mars through the melting of a dusty snowpack. Icarus 72, 95–127 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Khuller, A. R. & Clow, G. D. Turbulent fluxes and evaporation/sublimation rates on Earth, Mars, Titan, and exoplanets. J. Geophys. Res. Planets 129, e2023JE008114 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Halevy, I., Pierrehumbert, R. T. & Schrag, D. P. Radiative transfer in CO2‐rich paleoatmospheres. J. Geophys. Res. Atmos. 114, D18112 (2009).

  • Dundas, C. M. & Byrne, S. Modeling sublimation of ice exposed by new impacts in the Martian mid-latitudes. Icarus 206, 716–728 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haberle, R. M. et al. Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 1. The zonal‐mean circulation. J. Geophys. Res. Planets 98, 3093–3123 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Kahre, M. A., Murphy, J. R. & Haberle, R. M. Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res. Planets 111, E06008 (2006).

  • Kite, E. Supplementary data for “Carbonate formation and fluctuating habitability on Mars”. Zenodo https://doi.org/10.5281/zenodo.11489512 (2024).

  • Rodriguez, J. A. P. et al. Did the Martian outflow channels mostly form during the Amazonian Period? Icarus 257, 387–395 (2015).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments