Hu, R., Kass, D. M., Ehlmann, B. L. & Yung, Y. L. Tracing the fate of carbon and the atmospheric evolution of Mars. Nat. Commun. 6, 10003 (2015).
Milliken, R. E., Grotzinger J. P. & Thomson B. J. Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater. Geophys. Res. Lett. 37, L04201 (2010).
Kite, E. S. & Conway, S. Geological evidence for multiple climate transitions on Early Mars. Nat. Geosci. 17, 10–19 (2024).
Tutolo, B. M. et al. Carbonates identified by the Curiosity rover indicate a carbon cycle operated on ancient Mars. Science 388, 292–297 (2025).
Kahn, R. The evolution of CO2 on Mars. Icarus 62, 175–190 (1985).
Lee, C.-T. A. et al. in Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 313–337 (Cambridge Univ. Press, 2020).
Walker, J. C., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long‐term stabilization of Earth’s surface temperature. J. Geophys. Res. Oceans 86, 9776–9782 (1981).
Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108–128 (1993).
McKay, C. P. & Nedell, S. S. Are there carbonate deposits in the Valles Marineris, Mars? Icarus 73, 142–148 (1988).
Catling, D. C. A chemical model for evaporites on early Mars: possible sedimentary tracers of the early climate and implications for exploration. J. Geophys. Res. Planets 104, 16453–16469 (1999).
Ehlmann, B. L. et al. Orbital identification of carbonate-bearing rocks on Mars. Science 322, 1828–1832 (2008).
Bandfield, J. L., Glotch, T. D. & Christensen, P. R. Spectroscopic identification of carbonate minerals in the Martian dust. Science 301, 1084–1087 (2003).
Edwards, C. S. & Ehlmann, B. L. Carbon sequestration on Mars. Geology 43, 863–866 (2015).
Bullock, M. A. & Moore, J. M. Atmospheric conditions on early Mars and the missing layered carbonates. Geophys. Res. Lett. 34, L19201 (2007).
Schieber, J. et al. Mars is a mirror—understanding the Pahrump Hills mudstones from a perspective of Earth analogues. Sedimentology 69, 2371–2435 (2022).
Thorpe, M. T. et al. Mars Science Laboratory CheMin data from the Glen Torridon region and the significance of lake‐groundwater interactions in interpreting mineralogy and sedimentary history. J. Geophys. Res. Planets 127, e2021JE007099 (2022).
Thomas, T. B., Hu, R. & Lo, D. Y. Constraints on the size and composition of the ancient Martian atmosphere from coupled CO2–N2–Ar isotopic evolution models. Planet. Sci. J. 4, 41 (2023).
Clavé, E. et al. Carbonation of mafic rocks in the Margin Unit, Jezero Crater, Mars. In Tenth International Conference on Mars Vol. 3007, 3161 (Lunar and Planetary Institute, 2024).
Meyer, M. J. et al. Geological context and significance of the clay-sulfate transition region in Mount Sharp, Gale Crater, Mars: an integrated assessment based on orbiter and rover data. Geol. Soc. Am. Bull. https://doi.org/10.1130/B37355.1 (2024).
Milliken, R. E., Ewing, R. C., Fischer, W. W. & Hurowitz, J. Wind‐blown sandstones cemented by sulfate and clay minerals in Gale Crater, Mars. Geophys. Res. Lett. 41, 1149–1154 (2014).
Grotzinger, J. P. & Milliken, R. E. in Sedimentary Geology of Mars Special Publication 102 (eds. Grotzinger J. P. & Milliken R. E.) 1–48 (Society for Sedimentary Geology, 2012).
Ehlmann, B. L. et al. Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53–60 (2011).
Johnson, B. C., Milliken, R. E., Lewis, K. W. & Collins, G. S. Impact generated porosity in Gale Crater and implications for the density of sedimentary rocks in lower Aeolis Mons. Icarus 366, 114539 (2021).
Horgan, B. H., Anderson, R. B., Dromart, G., Amador, E. S. & Rice, M. S. The mineral diversity of Jezero Crater: evidence for possible lacustrine carbonates on Mars. Icarus 339, 113526 (2020).
Hoehler, T. M. An energy balance concept for habitability. Astrobiology 7, 824–838 (2007).
Grotzinger, J. P. et al. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343, 1242777 (2014).
Bibring, J. P. et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006).
Li, A. Y., Kite, E. S. & Keating, K. The age and erosion rate of young sedimentary rock on Mars. Planet. Sc. J. 3, 246 (2022).
Lewis, K. W. & Aharonson, O. Occurrence and origin of rhythmic sedimentary rocks on Mars. J. Geophys. Res. Planets 119, 1432–1457 (2014).
Hurowitz, J. A. et al. Redox stratification of an ancient lake in Gale Crater, Mars. Science 356, eaah6849 (2017).
Manning, C. V., McKay, C. P. & Zahnle, K. J. Thick and thin models of the evolution of carbon dioxide on Mars. Icarus 180, 38–59 (2006).
Phillips, R. J. et al. Massive CO2 ice deposits sequestered in the south polar layered deposits of Mars. Science 332, 838–841 (2011).
Laskar, J. et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004).
Ramstad, R., Barabash, S., Futaana, Y., Nilsson, H. & Holmström, M. Ion escape from Mars through time: an extrapolation of atmospheric loss based on 10 years of Mars Express measurements. J. Geophys. Res. Planets 123, 3051–3060 (2018).
Lo, D. Y., Yelle, R. V., Lillis, R. J. & Deighan, J. I. Carbon photochemical escape rates from the modern Mars atmosphere. Icarus 360, 114371 (2021).
Kite, E. S., Halevy, I., Kahre, M. A., Wolff, M. J. & Manga, M. Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound. Icarus 223, 181–210 (2013).
Andrews‐Hanna, J. C., Zuber M. T., Arvidson R. E. & Wiseman S. M. Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. J. Geophys. Res. Planets 115, E06002 (2010).
Stanley, B. D., Hirschmann, M. M. & Withers, A. C. Solubility of COH volatiles in graphite-saturated martian basalts. Geochim. Cosmochim. Acta 129, 54–76 (2014).
Kite, E. S. et al. Changing spatial distribution of water flow charts major change in Mars’s greenhouse effect. Sci. Adv. 8, eabo5894 (2022).
Madeleine, J. B. et al. Recent ice ages on Mars: the role of radiatively active clouds and cloud microphysics. Geophys. Res. Lett. 41, 4873–4879 (2014).
Salvatore, M. R. & Christensen, P. R. Evidence for widespread aqueous sedimentation in the northern plains of Mars. Geology 42, 423–426 (2014).
Madeleine, J.-B. et al. Amazonian northern mid-latitude glaciation on Mars: a proposed climate scenario. Icarus 203, 390–405 (2009).
Booth, M. C. & Kieffer, H. H. Carbonate formation in Marslike environments. J. Geophys. Res. Solid Earth 83, 1809–1815 (1978).
Stephens, S. K. Carbonate Formation on Mars: Experiments and Models. PhD dissertation, California Institute of Technology; https://doi.org/10.7907/PSFY-MZ22 (1995).
Bristow, T. F. et al. Low Hesperian pCO2 constrained from in situ mineralogical analysis at Gale Crater, Mars. Proc. Natl Acad. Sci. USA 114, 2166–2170 (2017).
Boynton, W. V. et al. Evidence for calcium carbonate at the Mars Phoenix landing site. Science 325, 61–64 (2009).
Warner, N. H., Sowe, M., Gupta, S., Dumke, A. & Goddard, K. Fill and spill of giant lakes in the eastern Valles Marineris region of Mars. Geology 41, 675–678 (2013).
Williams, K. E., Toon, O. B., Heldmann, J. L. & Mellon, M. T. Ancient melting of mid-latitude snowpacks on Mars as a water source for gullies. Icarus 200, 418–425 (2009).
Warren, A. O., Wilson, S. A., Howard, A., Noblet, A. & Kite, E. S. Multiple overspill flood channels from young craters require surface melting and hundreds of meters of midlatitude ice late in Mars’s history. Planet. Sci. J. 5, 174 (2024).
Goudge, T. A., Fassett, C. I., Head, J. W., Mustard, J. F. & Aureli, K. L. Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy. Geology 44, 419–422 (2016).
Onstott, T. C. et al. Paleo-rock-hosted life on Earth and the search on Mars: a review and strategy for exploration. Astrobiology 19, 1230–1262 (2019).
Franz, H. B. et al. Indigenous and exogenous organics and surface–atmosphere cycling inferred from carbon and oxygen isotopes at Gale Crater. Nat. Astron. 4, 526 (2020).
Martin, P. E. et al. A two‐step K–Ar experiment on Mars: dating the diagenetic formation of jarosite from Amazonian groundwaters. J. Geophys. Res. Planets 122, 2803–2818 (2017).
Halevy, I. & Schrag, D. P. Sulfur dioxide inhibits calcium carbonate precipitation: implications for early Mars and Earth. Geophys. Res. Lett. 36, L23201 (2009).
Morris, R. V. et al. Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science 329, 421–424 (2010).
Mischna, M. A., Baker, V., Milliken, R., Richardson, M. & Lee, C. Effects of obliquity and water vapor/trace gas greenhouses in the early Martian climate. J. Geophys. Res. Planets 118, 560–576 (2013).
Ingersoll, A. P. Mars: occurrence of liquid water. Science 168, 972–973 (1970).
Stanley, B. D., Hirschmann, M. M. & Withers, A. C. CO2 solubility in Martian basalts and Martian atmospheric evolution. Geochim. Cosmochim. Acta 75, 5987–6003 (2011).
Graham, R. J. High pCO2 reduces sensitivity to CO2 perturbations on temperate, Earth-like planets throughout most of habitable zone. Astrobiology 21, 1406–1420 (2021).
Wordsworth, R. D., Kerber, L., Pierrehumbert, R. T., Forget, F., & Head, J. W. Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3-D climate model. J. Geophys. Res. Planets 120, 1201–1219 (2015).
Mansfield, M., Kite, E. S. & Mischna, M. A. Effect of Mars atmospheric loss on snow melt potential in a 3.5 Gyr Mars climate evolution model. J. Geophys. Res. Planets 123, 794–806 (2018).
Arvidson, R. E. et al. Spirit Mars rover mission: overview and selected results from the northern Home Plate Winter Haven to the side of Scamander Crater. J. Geophys. Res. Planets 115, E00F03 (2010).
Hausrath, E. M. et al. An examination of soil crusts on the floor of Jezero Crater, Mars. J. Geophys. Res. Planets 128, e2022JE007433 (2023).
Squyres, S. W. et al. Rocks of the Columbia Hills. J. Geophys. Res. Planets 111, E02S11 (2006).
Chojnacki, M. et al. Ancient Martian aeolian sand dune deposits recorded in the stratigraphy of Valles Marineris and implications for past climates. J. Geophys. Res. Planets 125, e2020JE006510 (2020).
Edgett, K. S. & Sarkar, R. Recognition of sedimentary rock occurrences in satellite and aerial images of other worlds—insights from Mars. Remote Sens. 13, 4296 (2021).
Allen, P. A. & Allen, J. R. Basin Analysis: Principles and Applications (Blackwell Publishing, 2005).
Kahre, M. A. et al. in The Atmosphere and Climate of Mars (eds Haberle, R. et al.) 295–337 (Cambridge Univ. Press, 2017).
Bridges, N. T. & Muhs, D. R. in Sedimentary Geology of Mars Special Publication 102 (eds Grotzinger J. & Milliken R.) 169–182 (Society for Sedimentary Geology, 2012).
Bridges, N. T. et al. Planet-wide sand motion on Mars. Geology 40, 31–34 (2012).
Bradley, B. A., Sakimoto, S. E., Frey, H. & Zimbelman, J. R. Medusae Fossae formation: new perspectives from Mars global surveyor. J. Geophys. Res. Planets 107, 2-1–2-17 (2002).
Hynek, B. M. & Di Achille, G. Geologic Map of Meridiani Planum, Mars SI-3356 (US Geological Survey, 2017).
Tanaka, K. L. et al. Geologic Map of Mars SIM-3292 (US Geological Survey, 2014).
Bennett, K. A. & Bell, J. F. III A global survey of Martian central mounds: central mounds as remnants of previously more extensive large-scale sedimentary deposits. Icarus 264, 331–341 (2016).
Michael, G. G. Planetary surface dating from crater size–frequency distribution measurements: multiple resurfacing episodes and differential isochron fitting. Icarus 226, 885–890 (2013).
Salese, F. et al. Sustained fluvial deposition recorded in Mars’ Noachian stratigraphic record. Nat. Commun. 11, 2067 (2020).
Bandfield, J. L., Edwards, C. S., Montgomery, D. R. & Brand, B. D. The dual nature of the martian crust: young lavas and old clastic materials. Icarus 222, 188–199 (2013).
Stack, K. M. Reconstructing Past Depositional and Diagenetic Processes through Quantitative Stratigraphic Analysis of the Martian Sedimentary Rock Record. PhD thesis, California Institute of Technology (2015).
Milliken, R. E., Fischer, W. W. & Hurowitz, J. A. Missing salts on early Mars. Geophys. Res. Lett. 36, L11202 (2009).
Smith, D. E. et al. Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. Planets 106, 23689 (2001).
Edgett, K. S. & Malin, M. C. Martian sedimentary rock stratigraphy: outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra. Geophys. Res. Lett. 29, 32-1–32-4 (2002).
Kite, E. S., Lucas, A. & Fassett, C. I. Pacing early Mars river activity: embedded craters in the Aeolis Dorsa region imply river activity spanned ≳(1–20) Myr. Icarus 225, 850–855 (2013).
Kite, E. S., Sneed, J., Mayer, D. P. & Wilson, S. A. Persistent or repeated surface habitability on Mars during the late Hesperian‐Amazonian. Geophys. Res. Lett. 44, 3991–3999 (2017).
Kite, E. S. & Noblet, A. High and dry: billion‐year trends in the aridity of river‐forming climates on Mars. Geophys. Res. Lett. 49, e2022GL101150 (2022).
Annex, A. M. & Lewis, K. W. Constraining the duration and ages of stratigraphic unconformities on Mars using exhumed craters. J. Geophys. Res. Planets 129, e2023JE008073 (2024).
Grant, J. A. & Wilson S. A. Late alluvial fan formation in southern Margaritifer Terra, Mars. Geophys. Res. Lett. 38, L08201 (2011).
Holo, S. J., Kite, E. S., Wilson, S. A. & Morgan, A. M. The timing of alluvial fan formation on Mars. Planet. Sci. J. 2, 210 (2021).
Foley, K. K., Lyons, W. B., Barrett, J. E. & Virginia, R. A. in Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates (eds Alonso-Zarza, A. M. & Tanner, L. H.) 89–104 (Geological Society of America, 2006).
Head, J. W. III, Kreslavsky, M. A. & Pratt, S. Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian period. J. Geophys. Res. Planets 107, 3-1–3-29 (2002).
Kite, E. S., Matsuyama, I., Manga, M., Perron, J. T. & Mitrovica, J. X. True polar wander driven by late-stage volcanism and the distribution of paleopolar deposits on Mars. Earth Planet. Sci. Lett. 280, 254–267 (2009).
Jakosky, B. M. & Carr, M. H. Possible precipitation of ice at low latitudes of Mars during periods of high obliquity. Nature 315, 559–561 (1985).
Mischna, M. A., Richardson, M. I., Wilson, R. J. & McCleese, D. J. On the orbital forcing of Martian water and CO2 cycles: a general circulation model study with simplified volatile schemes. J. Geophys. Res. Planets 108, 5062 (2003).
Steele, L. J., Balme, M. R. & Lewis, S. R. Regolith-atmosphere exchange of water in Mars’ recent past. Icarus 284, 233–248 (2017).
Kerber, L., Head, J. W., Madeleine, J.-B., Forget, F. & Wilson, L. The dispersal of pyroclasts from ancient explosive volcanoes on Mars: implications for the friable layered deposits. Icarus 219, 358–381 (2012).
Turbet, M. & Forget, F. The paradoxes of the Late Hesperian Mars ocean. Sci. Rep. 9, 5717 (2019).
Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).
Armstrong, J. C., Leovy, C. B. & Quinn, T. A 1 Gyr climate model for Mars: new orbital statistics and the importance of seasonally resolved polar processes. Icarus 171, 255–271 (2004).
Holo, S. J., Kite, E. S. & Robbins, S. J. Mars obliquity history constrained by elliptic crater orientations. Earth Planet. Sci. Lett. 496, 206–214 (2018).
Catling, D. C. in Encyclopedia of Paleoclimatology and Ancient Environments (ed. Gornitz, V.) 66–75 (Springer, 2009).
Mahaffy, P. R. et al. The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science 347, 412–414 (2015).
Bahcall, J. N., Pinsonneault, M. H. & Basu, S. Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 555, 990 (2001).
Gil-Lozano, C. et al. The key role of bedrock composition in the formation of carbonates on Mars. Geochem. Perspect. Lett. 28, 54–59 (2024).
Dong, C. et al. Modeling Martian atmospheric losses over time: implications for exoplanetary climate evolution and habitability. Astrophys. J. Lett. 859, L14 (2018).
Jakosky, B. M. & Edwards, C. S. Inventory of CO2 available for terraforming Mars. Nat. Astron. 2, 634–639 (2018).
Buhler, P. B. & Piqueux, S. Obliquity‐driven CO2 exchange between Mars’ atmosphere, regolith, and polar cap. J. Geophys. Res. Planets 126, e2020JE006759 (2021).
Ueno, Y. et al. Synthesis of 13C-depleted organic matter from CO in a reducing early Martian atmosphere. Nat. Geosci. 17, 503–507 (2024).
Koyama, S. et al. Stable carbon isotope evolution of formaldehyde on early Mars. Sci. Rep. 14, 21214 (2024).
Stern, J. C. et al. Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars. Proc. Natl Acad. Sci. USA 119, e2201139119 (2022).
Citron, R. I., Manga, M. & Hemingway, D. J. Timing of oceans on Mars from shoreline deformation. Nature 555, 643–646 (2018).
Khuller, A. R., Christensen, P. R. & Warren, S. G. Spectral albedo of dusty Martian H2O snow and ice. J. Geophys. Res. Planets 126, e2021JE006910 (2021).
Clow, G. D. Generation of liquid water on Mars through the melting of a dusty snowpack. Icarus 72, 95–127 (1987).
Khuller, A. R. & Clow, G. D. Turbulent fluxes and evaporation/sublimation rates on Earth, Mars, Titan, and exoplanets. J. Geophys. Res. Planets 129, e2023JE008114 (2024).
Halevy, I., Pierrehumbert, R. T. & Schrag, D. P. Radiative transfer in CO2‐rich paleoatmospheres. J. Geophys. Res. Atmos. 114, D18112 (2009).
Dundas, C. M. & Byrne, S. Modeling sublimation of ice exposed by new impacts in the Martian mid-latitudes. Icarus 206, 716–728 (2010).
Haberle, R. M. et al. Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 1. The zonal‐mean circulation. J. Geophys. Res. Planets 98, 3093–3123 (1993).
Kahre, M. A., Murphy, J. R. & Haberle, R. M. Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res. Planets 111, E06008 (2006).
Kite, E. Supplementary data for “Carbonate formation and fluctuating habitability on Mars”. Zenodo https://doi.org/10.5281/zenodo.11489512 (2024).
Rodriguez, J. A. P. et al. Did the Martian outflow channels mostly form during the Amazonian Period? Icarus 257, 387–395 (2015).