Thursday, June 26, 2025
No menu items!
HomeNatureA cost-effective all-in-one halide material for all-solid-state batteries

A cost-effective all-in-one halide material for all-solid-state batteries

  • Balaish, M. et al. Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 6, 227–239 (2021).

  • Janek, J. & Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Inoishi, A., Nishio, A., Yoshioka, Y., Kitajou, A. & Okada, S. A single-phase all-solid-state lithium battery based on Li1.5Cr0.5Ti1.5(PO4)3 for high rate capability and low temperature operation. Chem. Commun. 54, 3178–3181 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tan, D. H. S. et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373, 1494–1499 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, M. et al. Dense all-electrochem-active electrodes for all-solid-state lithium batteries. Adv. Mater. 33, 2008723 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Han, F., Gao, T., Zhu, Y., Gaskell, K. J. & Wang, C. A battery made from a single material. Adv. Mater. 27, 3473–3483 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, K., Gu, Z., Xi, Z., Hu, L. & Ma, C. Li3TiCl6 as ionic conductive and compressible positive electrode active material for all-solid-state lithium-based batteries. Nat. Commun. 14, 1396 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inoishi, A., Omuta, T., Kobayashi, E., Kitajou, A. & Okada, S. A single-phase, all-solid-state sodium battery using Na3−xV2−xZrx(PO4)3 as the cathode, anode, and electrolyte. Adv. Mater. Interfaces 4, 1600942 (2017).

  • Inoishi, A. et al. Single-phase all-solid-state lithium-ion battery using Li3V2(PO4)3 as the cathode, anode, and electrolyte. ChemistrySelect 2, 7925–7929 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tan, D. H. S. et al. Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Lett. 4, 2418–2427 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ohno, S., Rosenbach, C., Dewald, G. F., Janek, J. & Zeier, W. G. Linking solid electrolyte degradation to charge carrier transport in the thiophosphate‐based composite cathode toward solid‐state lithium-sulfur batteries. Adv. Funct. Mater. 31, 2010620 (2021).

  • Schwietert, T. K. et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19, 428–435 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui, L. et al. A cathode homogenization strategy for enabling long-cycle-life all-solid-state lithium batteries. Nat. Energy 9, 1084–1094 (2024).

  • Minnmann, P., Quillmann, L., Burkhardt, S., Richter, F. H. & Janek, J. Quantifying the impact of charge transport bottlenecks in composite cathodes of all-solid-state batteries. J. Electrochem. Soc. 168, 040537 (2021).

  • Bielefeld, A., Weber, D. A. & Janek, J. Microstructural modeling of composite cathodes for all-solid-state batteries. J. Phys. Chem. C 123, 1626–1634 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Strauss, F. et al. Impact of cathode material particle size on the capacity of bulk-type all-solid-state batteries. ACS Energy Lett. 3, 992–996 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Minnmann, P. et al. Designing cathodes and cathode active materials for solid‐state batteries. Adv. Energy Mater. 12, 2201425 (2022).

  • Cao, D. et al. Processing strategies to improve cell-level energy density of metal sulfide electrolyte-based all-solid-state Li metal batteries and beyond. ACS Energy Lett. 5, 3468–3489 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. et al. Interface-assisted in-situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries. Nano Energy 76, 105015 (2020).

  • Zahnow, J. et al. Impedance analysis of NCM cathode materials: electronic and ionic partial conductivities and the influence of microstructure. ACS Appl. Energy Mater. 4, 1335–1345 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tian, Y. et al. Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy Environ. Sci. 10, 1150–1166 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Challenges and strategies of low-pressure all-solid-state batteries. Adv. Mater. 37, 2413499 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, X. et al. External-pressure–electrochemistry coupling in solid-state lithium metal batteries. Nat. Rev. Mater. 9, 305–320 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, J. et al. Healable and conductive sulfur iodide for solid-state Li–S batteries. Nature 627, 301–305 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Swamy, T., Chen, X. & Chiang, Y.-M. Electrochemical redox behavior of Li ion conducting sulfide solid electrolytes. Chem. Mater. 31, 707–713 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shao, B. et al. Enabling conversion‐type iron fluoride cathode by halide‐based solid electrolyte. Adv. Funct. Mater. 32, 2206845 (2022).

  • Liang, J. et al. Halide layer cathodes for compatible and fast-charged halides-based all-solid-state Li metal batteries. Angew. Chem. Int. Ed. 62, e202217081 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z. et al. Low-cost iron trichloride cathode for all-solid-state lithium-ion batteries. Nat. Sustain. 7, 1492–1500 (2024).

    Article 

    Google Scholar
     

  • Liu, Z., Zhang, G., Pepas, J., Ma, Y. & Chen, H. Li2FeCl4 as a cost-effective and durable cathode for solid-state Li-ion batteries. ACS Energy Lett. 9, 5464–5470 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, J. et al. Superionic conducting halide frameworks enabled by interface-bonded halides. J. Am. Chem. Soc. 145, 2183–2194 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Structural regulation of halide superionic conductors for all-solid-state lithium batteries. Nat. Commun. 15, 53 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. Designing lithium halide solid electrolytes. Nat. Commun. 15, 1050 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jun, K., Chen, Y., Wei, G., Yang, X. & Ceder, G. Diffusion mechanisms of fast lithium-ion conductors. Nat. Rev. Mater. 9, 887–905 (2024).

  • Kanno, R. et al. Structure, ionic conductivity, and phase transformation in new polymorphs of the double chloride spinel, Li2FeCl4. J. Solid State Chem. 72, 363–375 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tanibata, N. et al. High formability and fast lithium diffusivity in metastable spinel chloride for rechargeable all-solid-state lithium-ion batteries. Adv. Energy Sustain. Res. 1, 2000025 (2020).

    Article 

    Google Scholar
     

  • Hebb, M. H. Electrical conductivity of silver sulfide. J. Chem. Phys. 20, 185–190 (1952).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stallard, J. C. et al. Mechanical properties of cathode materials for lithium-ion batteries. Joule 6, 984–1007 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Qu, M. et al. Nanomechanical quantification of elastic, plastic, and fracture properties of LiCoO2. Adv. Energy Mater. 2, 940–944 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Xu, R., Sun, H., de Vasconcelos, L. S. & Zhao, K. Mechanical and structural degradation of LiNixMnyCozO2 cathode in Li-ion batteries: an experimental study. J. Electrochem. Soc. 164, A3333–A3341 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H. et al. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes. Science 344, 1252817 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jain, A. et al. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, S. et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed. 58, 8039–8043 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S., Liu, Y. & Mo, Y. Frustration in super‐ionic conductors unraveled by the density of atomistic states. Angew. Chem. 62, e202215544 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Farrow, C. et al. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter 19, 335219 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munoz, M., Argoul, P. & Farges, F. Continuous Cauchy wavelet transform analyses of EXAFS spectra: a qualitative approach. Am. Mineral. 88, 694–700 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments