Thursday, June 19, 2025
No menu items!
HomeNatureComplete computational design of high-efficiency Kemp elimination enzymes

Complete computational design of high-efficiency Kemp elimination enzymes

  • Röthlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Siegel, J. B. et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329, 309–313 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Privett, H. K. et al. Iterative approach to computational enzyme design. Proc. Natl Acad. Sci. USA 109, 3790–3795 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, L. et al. De novo computational design of retro-aldol enzymes. Science 319, 1387–1391 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeh, A. H.-W. et al. De novo design of luciferases using deep learning. Nature 614, 774–780 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blomberg, R. et al. Precision is essential for efficient catalysis in an evolved Kemp eliminase. Nature 503, 418–421 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Khersonsky, O. et al. Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59. Proc. Natl Acad. Sci. USA 109, 10358–10363 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giger, L. et al. Evolution of a designed retro-aldolase leads to complete active site remodeling. Nat. Chem. Biol. 9, 494–498 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patsch, D. et al. Enriching productive mutational paths accelerates enzyme evolution. Nat. Chem. Biol. 20, 1662–1669 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korendovych, I. V. & DeGrado, W. F. Catalytic efficiency of designed catalytic proteins. Curr. Opin. Struct. Biol. 27, 113–121 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lovelock, S. L. et al. The road to fully programmable protein catalysis. Nature 606, 49–58 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Listov, D., Goverde, C. A., Correia, B. E. & Fleishman, S. J. Opportunities and challenges in design and optimization of protein function. Nat. Rev. Mol. Cell Biol. 25, 639–653 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marques, S. M., Planas-Iglesias, J. & Damborsky, J. Web-based tools for computational enzyme design. Curr. Opin. Struct. Biol. 69, 19–34 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Braun, M. et al. Computational design of highly active de novo enzymes. Preprint at bioRxiv https://doi.org/10.1101/2024.08.02.606416 (2024).

  • Lauko, A. et al. Computational design of serine hydrolases. Science https://doi.org/10.1126/science.adu2454 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Bar-Even, A. et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khare, S. D. & Fleishman, S. J. Emerging themes in the computational design of novel enzymes and protein-protein interfaces. FEBS Lett. 587, 1147–1154 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baker, D. An exciting but challenging road ahead for computational enzyme design. Protein Sci. 19, 1817–1819 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kries, H., Blomberg, R. & Hilvert, D. De novo enzymes by computational design. Curr. Opin. Chem. Biol. 17, 221–228 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kiss, G., Çelebi-Ölçüm, N., Moretti, R., Baker, D. & Houk, K. N. Computational enzyme design. Angew. Chem. Int. Ed. Engl. 52, 5700–5725 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldenzweig, A. & Fleishman, S. J. Principles of protein stability and their application in computational design. Annu. Rev. Biochem. 87, 105–129 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frushicheva, M. P., Cao, J., Chu, Z. T. & Warshel, A. Exploring challenges in rational enzyme design by simulating the catalysis in artificial Kemp eliminase. Proc. Natl Acad. Sci. USA 107, 16869–16874 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otten, R. et al. How directed evolution reshapes the energy landscape in an enzyme to boost catalysis. Science 370, 1442–1446 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagel, Z. D. & Klinman, J. P. A 21st century revisionist’s view at a turning point in enzymology. Nat. Chem. Biol. 5, 543–550 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaissier Welborn, V. & Head-Gordon, T. Computational design of synthetic enzymes. Chem. Rev. 119, 6613–6630 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chu, A. E., Lu, T. & Huang, P.-S. Sparks of function by de novo protein design. Nat. Biotechnol. 42, 203–215 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipsh-Sokolik, R. et al. Combinatorial assembly and design of enzymes. Science 379, 195–201 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Khersonsky, O. et al. Automated design of efficient and functionally diverse enzyme repertoires. Mol. Cell 72, 178–186.e5 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldenzweig, A. et al. Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol. Cell 63, 337–346 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rocklin, G. J. et al. Global analysis of protein folding using massively parallel design, synthesis, and testing. Science 357, 168–175 (2017).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Polizzi, N. F. & DeGrado, W. F. A defined structural unit enables de novo design of small-molecule-binding proteins. Science 369, 1227–1233 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frank, C. et al. Scalable protein design using optimization in a relaxed sequence space. Science 386, 439–445 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, T., Liu, M. H., Chen, Y., Kim, J. & Huang, P.-S. Assessing generative model coverage of protein structures with SHAPES. Preprint at bioRxiv https://doi.org/10.1101/2025.01.09.632260 (2025).

  • Kim, D. et al. Computational design of metallohydrolases. Preprint at bioRxiv https://doi.org/10.1101/2024.11.13.623507 (2024).

  • Copeland, R. A. Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis (Wiley-VCH, 1996).

  • Sillitoe, I. et al. CATH: expanding the horizons of structure-based functional annotations for genome sequences. Nucleic Acids Res. 47, D280–D284 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagano, N., Orengo, C. A. & Thornton, J. M. One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions. J. Mol. Biol. 321, 741–765 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, P. S. et al. De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nat. Chem. Biol. 12, 29–34 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eisenbeis, S. et al. Potential of fragment recombination for rational design of proteins. J. Am. Chem. Soc. 134, 4019–4022 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lapidoth, G. et al. Highly active enzymes by automated combinatorial backbone assembly and sequence design. Nat. Commun. 9, 2780 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipsh‐Sokolik, R., Listov, D. & Fleishman, S. J. The AbDesign computational pipeline for modular backbone assembly and design of binders and enzymes. Protein Sci. 1, 151–159 (2021).

  • Zanghellini, A. et al. New algorithms and an in silico benchmark for computational enzyme design. Protein Sci. 15, 2785–2794 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leaver-Fay, A. et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warszawski, S., Netzer, R., Tawfik, D. S. & Fleishman, S. J. A ‘fuzzy’-logic language for encoding multiple physical traits in biomolecules. J. Mol. Biol. 426, 4125–4138 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Listov, D. et al. Assessing and enhancing foldability in designed proteins. Protein Sci. 31, e4400 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Na, J., Houk, K. N. & Hilvert, D. Transition state of the base-promoted ring-opening of isoxazoles. Theoretical prediction of catalytic functionalities and design of haptens for antibody production. J. Am. Chem. Soc. 118, 6462–6471 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Tantillo, D. J., Chen, J. & Houk, K. N. Theozymes and compuzymes: theoretical models for biological catalysis. Curr. Opin. Chem. Biol. 2, 743–750 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, N. S. et al. The evolution of multiple active site configurations in a designed enzyme. Nat. Commun. 9, 3900 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutierrez-Rus, L. I. et al. Enzyme enhancement through computational stability design targeting NMR-determined catalytic hotspots. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.4c09428 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Warshel, A. & Weiss, R. M. An empirical valence bond approach for comparing reactions in solutions and in enzymes. J. Am. Chem. Soc. 102, 6218–6226 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Hupfeld, E. et al. Conformational modulation of a mobile loop controls catalysis in the (βα)8-barrel enzyme of histidine biosynthesis HisF. JACS Au 4, 3258–3276 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlee, S. et al. Relationship of catalysis and active site loop dynamics in the (βα)8-barrel enzyme indole-3-glycerol phosphate synthase. Biochemistry 57, 3265–3277 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldsmith, M. et al. Overcoming an optimization plateau in the directed evolution of highly efficient nerve agent bioscavengers. Protein Eng. Des. Sel. 30, 333–345 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kemp, D. S., Cox, D. D. & Paul, K. G. Physical organic chemistry of benzisoxazoles. IV. Origins and catalytic nature of the solvent rate acceleration for the decarboxylation of 3-carboxybenzisoxazoles. J. Am. Chem. Soc. 97, 7312–7318 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Li, W., Jaroszewski, L. & Godzik, A. Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 17, 282–283 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barber-Zucker, S. et al. Stable and functionally diverse versatile peroxidases designed directly from sequences. J. Am. Chem. Soc. 144, 3564–3571 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richter, F., Leaver-Fay, A., Khare, S. D., Bjelic, S. & Baker, D. De novo enzyme design using Rosetta3. PLoS ONE 6, e19230 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribeiro, A. J. M. et al. Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites. Nucleic Acids Res. 46, D618–D623 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elmsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

  • Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woods, R. J. & Chappelle, R. Electrostatic potential atomic partial charges for condensed-phase simulations of carbohydrates. J. Mol. Struct. 527, 149–156 (2000).

  • Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian 16, Revision B.01 (Gaussian, 2016).

  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Søndergaard, C. R., Olsson, M. H. M., Rostkowski, M. & Jensen, J. H. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J. Chem. Theory Comput. 7, 2284–2295 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Izadi, S., Anandakrishnan, R. & Onufriev, A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 5, 3863–3871 (2014).

  • Listov, D. et al. Complete computational design of high-efficiency Kemp elimination enzymes. Zenodo https://doi.org/10.5281/zenodo.14563437 (2025).

  • Case, D. A. et al. Amber 2025 (Univ. California, San Francisco, 2025).

  • Tian, C. et al. Ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 16, 528–552 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Schneider, T. & Stoll, E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17, 1302–1322 (1978).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ryckaert, J.-P., Ciccotti, G. & Berendsen, H. J. C. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hopkins, C. W., Le Grand, S., Walker, R. C. & Roitberg, A. E. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 11, 1864–1874 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bauer, P. et al. Q6: a comprehensive toolkit for empirical valence bond and related free energy calculations. SoftwareX 7, 388–395 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kaminski, G. A., Friesner, R. A., Tirado-Rives, J. & Jorgensen, W. L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • King, G. & Warshel, A. A surface constrained all-atom solvent model for effective simulations of polar solvents. J. Chem. Phys. 91, 3647–3661 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, F. S. & Warshel, A. A local reaction field method for fast evaluation of long-range electrostatic interactions in molecular simulations. J. Chem. Phys. 97, 3100–3107 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McGibbon, R. T. et al. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528–1532 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roe, D. R. & Cheatham, T. E. 3rd PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Case, D. A. et al. AmberTools. J. Chem. Inf. Model. 63, 6183–6191 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidtke, P., Bidon-Chanal, A., Luque, F. J. & Barril, X. MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics 27, 3276–3285 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagner, J. R. et al. POVME 3.0: software for mapping binding pocket flexibility. J. Chem. Theory Comput. 13, 4584–4592 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fleishman, S. J. et al. RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. PLoS ONE 6, e20161 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments