Thursday, June 19, 2025
No menu items!
HomeNatureOn the effects of fault alignment on slip stability

On the effects of fault alignment on slip stability

  • Harris, R. A. Large earthquakes and creeping faults. Rev. Geophys. 55, 169–198 (2017).

    Article 

    Google Scholar
     

  • Lee, J., Tsai, V. C., Hirth, G., Chatterjee, A. & Trugman, D. T. Fault-network geometry influences earthquake frictional behaviour. Nature 631, 106–110 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bürgmann, R. The geophysics, geology and mechanics of slow fault slip. Earth Planet. Sci. Lett. 495, 112–134 (2018).

    Article 

    Google Scholar
     

  • Dieterich, J. H. Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. Solid Earth 84, 2161–2168 (1979).

    Article 

    Google Scholar
     

  • Schulz, S. S., Mavko, G. M., Burford, R. O. & Stuart, W. D. Long-term fault creep observations in central California. J. Geophys. Res. Solid Earth 87, 6977–6982 (1982).

    Article 

    Google Scholar
     

  • Kaneko, Y., Fialko, Y., Sandwell, D., Tong, X. & Furuya, M. Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties. J. Geophys. Res. Solid Earth 118, 316–331 (2013).

    Article 

    Google Scholar
     

  • Lindsey, E. O. & Fialko, Y. Geodetic constraints on frictional properties and earthquake hazard in the Imperial Valley, Southern California. J. Geophys. Res. Solid Earth 121, 1097–1113 (2016).

    Article 

    Google Scholar
     

  • Savage, J. & Lisowski, M. Inferred depth of creep on the Hayward fault, central California. J. Geophys. Res. Solid Earth 98, 787–793 (1993).

    Article 

    Google Scholar
     

  • Vavra, E. J. et al. Active dipping interface of the Southern San Andreas fault revealed by space geodetic and seismic imaging. J. Geophys. Res. Solid Earth 128, e2023JB026811 (2023).

    Article 

    Google Scholar
     

  • Thatcher, W. & Hill, D. P. Fault orientations in extensional and conjugate strike-slip environments and their implications. Geology 19, 1116–1120 (1991).

    Article 

    Google Scholar
     

  • Fialko, Y. Estimation of absolute stress in the hypocentral region of the 2019 Ridgecrest, California, earthquakes. J. Geophys. Res. Solid Earth 126, e2021JB022000 (2021).

    Article 

    Google Scholar
     

  • Zou, X., Fialko, Y., Dennehy, A., Cloninger, A. & Semnani, S. J. High-angle active conjugate faults in the Anza-Borrego Shear Zone, Southern California. Geophys. Res. Lett. 50, e2023GL105783 (2023).

    Article 

    Google Scholar
     

  • Provost, A.-S. & Houston, H. Orientation of the stress field surrounding the creeping section of the San Andreas Fault: evidence for a narrow mechanically weak fault zone. J. Geophys. Res. Solid Earth 106, 11373–11386 (2001).

    Article 

    Google Scholar
     

  • Poliakov, A. B., Dmowska, R. & Rice, J. R. Dynamic shear rupture interactions with fault bends and off-axis secondary faulting. J. Geophys. Res. Solid Earth 107, 2295 (2002).

    Article 

    Google Scholar
     

  • Moore, D. E. & Rymer, M. J. Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature 448, 795–797 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vavra, E. J. et al. Characteristic slow-slip events on the Superstition Hills Fault, Southern California. Geophys. Res. Lett. 51, e2023GL107244 (2024).

    Article 

    Google Scholar
     

  • Wang, K. & Fialko, Y. Space geodetic observations and models of postseismic deformation due to the 2005 M7.6 Kashmir (Pakistan) earthquake. J. Geophys. Res. Solid Earth 119, 7306–7318 (2014).

    Article 

    Google Scholar
     

  • Wang, K. & Fialko, Y. Observations and modeling of coseismic and postseismic deformation due to the 2015 Mw 7.8 Gorkha (Nepal) earthquake. J. Geophys. Res. Solid Earth 123, 761–779 (2018).

    Article 

    Google Scholar
     

  • Brown, K. M. & Fialko, Y. ‘Melt welt’ mechanism of extreme weakening of gabbro at seismic slip rates. Nature 488, 638–641 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noda, H. & Lapusta, N. Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature 493, 518–521 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jennings, C. W. & Bryant, W. A. Fault Activity Map of California. California Division of Mines and Geology, Geologic Data Map No. 6 (2010).

  • Mitchell, E., Fialko, Y. & Brown, K. Frictional properties of gabbro at conditions corresponding to slow slip events in subduction zones. Geochem. Geophys. Geosyst. 16, 4006–4020 (2015).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments