Stoner, J. H. & Rushfield, R. (eds.) Conservation of Easel Paintings (Routledge, 2020).
Idelson, A. I. & Severini, L. in The Encyclopedia of Archaeological Sciences (ed. López Varela, S. L.) (Wiley, 2018).
Corona, L. Stored collections of museums: an overview of how visible storage makes them accessible. Collect. Curation 44, 1–8 (2025).
Stone, A. Treasures in the Basement? An Analysis of Collection Utilization in Art Museums. RAND dissertation series, RAND School of Public Policy (2002).
Zeng, Y., Gong, Y. & Zeng, X. Controllable digital restoration of ancient paintings using convolutional neural network and nearest neighbor. Pattern Recognit. Lett. 133, 158–164 (2020).
O’Brien, C., Hutson, J., Olsen, T. & Ratican, J. Limitations and possibilities of digital restoration techniques using generative AI tools: reconstituting Antoine François Callet’s Achilles Dragging Hector’s Body Past the Walls of Troy. Arts Commun. 1, 1793 (2023).
Liu, X., Wan, J. & Wang, N. Ancient painting inpainting with regional attention-style transfer and global context perception. Appl. Sci. 14, 8777 (2024).
Xu, Z. et al. A comprehensive dataset for digital restoration of Dunhuang murals. Sci. Data 11, 955 (2024).
Stubbs-Lee, D. A. A conservator’s investigation of museums, visible storage, and the interpretation of conservation. Collections 5, 265–323 (2009).
Vecco, M. & Piazzai, M. Deaccessioning of museum collections: what do we know and where do we stand in Europe? J. Cult. Heritage 16, 221–227 (2015).
Keene, S., Stevenson, A. & Monti, F. Collections for People: Museums’ Stored Collections as a Public Resource (UCL Institute of Archaeology, 2008).
Jessell, B. Helmut Ruhemann’s inpainting techniques. J. Am. Inst. Conserv. 17, 1–8 (1977).
Tate-Harte, A. & Thickett, D. Calculating the carbon footprint of interventive and preventive conservation at English Heritage, UK. Stud. Conserv. 69, 323–332 (2024).
Johansson, E. A Detailed Conservation Report of a Heavily Retouched Painting from the Otto Valstad Collection. Master’s thesis, Univ. of Oslo (2014).
Scott, D. A. Art restoration and its contextualization. J. Aesthetic Educ. 51, 82–104 (2017).
Amura, A. et al. Image analysis applied to the planning of a canvas painting restoration intervention. Ge-conservacion 18, 339–346 (2020).
Kumar, P. & Gupta, V. Preserving artistic heritage: a comprehensive review of virtual restoration methods for damaged artworks. Arch. Comput. Methods Eng. 32, 1199–1227 (2025).
Rojas, D. J. B., Fernandes, B. J. T. & Fernandes, S. M. M. A review on image inpainting techniques and datasets. In 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI) 240–247 (IEEE, 2020).
Yang, J. & Ruhaiyem, N. I. R. Review of deep learning-based image inpainting techniques. IEEE Access 12, 138441–138482 (2024).
Barcelos, I. M., Rabelo, T. B., Bernardini, F., Monteiro, R. S. & Fernandes, L. A. F. From past to present: a tertiary investigation of twenty-four years of image inpainting. Comput. Graphics 123, 104010 (2024).
Elharrouss, O., Damseh, R., Belkacem, A. N., Badidi, E. & Lakas, A. Transformer-based image and video inpainting: current challenges and future directions. Artif. Intell. Rev. 58, 124 (2025).
Li, H., Hu, L., Liu, J., Zhang, J. & Ma, T. A review of advances in image inpainting research. Imaging Sci. J. 72, 669–691 (2024).
Bugeau, A., Bertalmío, M., Caselles, V. & Sapiro, G. A comprehensive framework for image inpainting. IEEE Trans. Image Process. 19, 2634–2645 (2010).
Khalid, S. et al. A review on traditional and artificial intelligence-based preservation techniques for oil painting artworks. Gels 10, 517 (2024).
Sizyakin, R. et al. Crack detection in paintings using convolutional neural networks. IEEE Access 8, 74535–74552 (2020).
Maali Amiri, M. & Messinger, D. W. Virtual cleaning of works of art using a deep generative network: spectral reflectance estimation. Heritage Sci. 11, 16 (2023).
Palomero, C. M. T. & Soriano, M. N. Digital cleaning and “dirt” layer visualization of an oil painting. Opt. Express 19, 21011–21017 (2011).
Munoz-Pandiella, I., Andujar, C., Cayuela, B., Pueyo, X. & Bosch, C. Automated digital color restitution of mural paintings using minimal art historian input. Comput. Graphics 114, 316–325 (2023).
Merizzi, F. et al. Deep image prior inpainting of ancient frescoes in the Mediterranean Alpine arc. Heritage Sci. 12, 41 (2024).
Priego, E., Herráez, J., Denia, J. L. & Navarro, P. Technical study for restoration of mural paintings through the transfer of a photographic image to the vault of a church. J. Cult. Heritage 58, 112–121 (2022).
Cricchio, C. The restoration of the panel painting depicting the Adoration of Shepherds with a Saint Bishop. CeROArt. Conservation, exposition, Restauration d’Objets d’Art https://doi.org/10.4000/ceroart.5224 (2017).
Nocheseda, C. J. C., Santos, M. F. A., Espera, A. H. & Advincula, R. C. 3D digital manufacturing technologies, materials, and artificial intelligence in art. MRS Commun. 13, 1102–1118 (2023).
Elkhuizen, W. et al. Gloss, color, and topography scanning for reproducing a painting’s appearance using 3D printing. J. Comput. Cult. Heritage 12, 27:1–27:22 (2019).
Dardes, K. & Rothe, A. (eds.) The Structural Conservation of Panel Paintings: Proceedings of a Symposium at the J. Paul Getty Museum (Getty Publications, 1998).
Mecklenburg, M. F., Charola, A. E. & Koestler, R. J. (eds.) New Insights into the Cleaning of Paintings: Proceedings from the Cleaning 2010 International Conference (Smithsonian Institution Scholarly Press, 2019).
Yoo, W. S., Kang, K., Kim, J. G. & Yoo, Y. Extraction of color information and visualization of color differences between digital images through pixel-by-pixel color-difference mapping. Heritage 5, 3923 (2022).
Antropov, S. & Bratasz, Ł. Development of craquelure patterns in paintings on panels. Heritage Sci. 12, 89 (2024).
Karianakis, N. & Maragos, P. An integrated system for digital restoration of prehistoric Theran wall paintings. In 2013 18th International Conference on Digital Signal Processing (DSP) 1–6 (IEEE, 2013).
Ridderbos, B., van Buren, A. & van Veen, H. T. Early Netherlandish Paintings: Rediscovery, Reception, and Research (Getty Publications, 2005).
Crowe, J. The Early Flemish Painters: Notices of Their Lives and Works (John Murray, 1872).
Hand, J. O. & Wolff, M. Early Netherlandish Painting (National Gallery of Art, 1986).
de Loo, G. H. Hans Memlinc in Rogier van der Weyden’s Studio. Burlington Magazine for Connoisseurs 52, 160–177 (1928).
Cohen, E. J., Bravi, R., Bagni, M. A. & Minciacchi, D. Precision in drawing and tracing tasks: different measures for different aspects of fine motor control. Hum. Mov. Sci. 61, 177–188 (2018).
Komarova, N. L. & Jameson, K. A. A quantitative theory of human color choices. PLoS ONE 8, e55986 (2013).
Emery, K. J. & Webster, M. A. Individual differences and their implications for color perception. Curr. Opin. Behav. Sci. 30, 28–33 (2019).
Smet, K. A. G., Webster, M. A. & Whitehead, L. A. A simple principled approach for modeling and understanding uniform color metrics. J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 33, A319–A331 (2016).
Abasi, S., Amani Tehran, M. & Fairchild, M. D. Distance metrics for very large color differences. Color Res. Appl. 45, 208–223 (2020).
Song, A., Faugeras, O. & Veltz, R. A neural field model for color perception unifying assimilation and contrast. PLoS Comput. Biol. 15, e1007050 (2019).
Pazzaglia, M. et al. Loss and beauty: how experts and novices judge paintings with lacunae. Psychol. Res. 85, 1838–1847 (2021).
Saunders, D. Ultra-violet filters for artificial light sources. Tech. Bull. 13, 61–68 (1989).