Saturday, June 14, 2025
No menu items!
HomeNaturePhysical restoration of a painting with a digitally constructed mask

Physical restoration of a painting with a digitally constructed mask

  • Stoner, J. H. & Rushfield, R. (eds.) Conservation of Easel Paintings (Routledge, 2020).

  • Idelson, A. I. & Severini, L. in The Encyclopedia of Archaeological Sciences (ed. López Varela, S. L.) (Wiley, 2018).

  • Corona, L. Stored collections of museums: an overview of how visible storage makes them accessible. Collect. Curation 44, 1–8 (2025).

    Article 

    Google Scholar
     

  • Stone, A. Treasures in the Basement? An Analysis of Collection Utilization in Art Museums. RAND dissertation series, RAND School of Public Policy (2002).

  • Zeng, Y., Gong, Y. & Zeng, X. Controllable digital restoration of ancient paintings using convolutional neural network and nearest neighbor. Pattern Recognit. Lett. 133, 158–164 (2020).

    Article 
    ADS 

    Google Scholar
     

  • O’Brien, C., Hutson, J., Olsen, T. & Ratican, J. Limitations and possibilities of digital restoration techniques using generative AI tools: reconstituting Antoine François Callet’s Achilles Dragging Hector’s Body Past the Walls of Troy. Arts Commun. 1, 1793 (2023).

    Article 

    Google Scholar
     

  • Liu, X., Wan, J. & Wang, N. Ancient painting inpainting with regional attention-style transfer and global context perception. Appl. Sci. 14, 8777 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Z. et al. A comprehensive dataset for digital restoration of Dunhuang murals. Sci. Data 11, 955 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stubbs-Lee, D. A. A conservator’s investigation of museums, visible storage, and the interpretation of conservation. Collections 5, 265–323 (2009).

    Article 

    Google Scholar
     

  • Vecco, M. & Piazzai, M. Deaccessioning of museum collections: what do we know and where do we stand in Europe? J. Cult. Heritage 16, 221–227 (2015).

    Article 

    Google Scholar
     

  • Keene, S., Stevenson, A. & Monti, F. Collections for People: Museums’ Stored Collections as a Public Resource (UCL Institute of Archaeology, 2008).

  • Jessell, B. Helmut Ruhemann’s inpainting techniques. J. Am. Inst. Conserv. 17, 1–8 (1977).

    Article 

    Google Scholar
     

  • Tate-Harte, A. & Thickett, D. Calculating the carbon footprint of interventive and preventive conservation at English Heritage, UK. Stud. Conserv. 69, 323–332 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Johansson, E. A Detailed Conservation Report of a Heavily Retouched Painting from the Otto Valstad Collection. Master’s thesis, Univ. of Oslo (2014).

  • Scott, D. A. Art restoration and its contextualization. J. Aesthetic Educ. 51, 82–104 (2017).

    Article 

    Google Scholar
     

  • Amura, A. et al. Image analysis applied to the planning of a canvas painting restoration intervention. Ge-conservacion 18, 339–346 (2020).

    Article 

    Google Scholar
     

  • Kumar, P. & Gupta, V. Preserving artistic heritage: a comprehensive review of virtual restoration methods for damaged artworks. Arch. Comput. Methods Eng. 32, 1199–1227 (2025).

    Article 

    Google Scholar
     

  • Rojas, D. J. B., Fernandes, B. J. T. & Fernandes, S. M. M. A review on image inpainting techniques and datasets. In 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI) 240–247 (IEEE, 2020).

  • Yang, J. & Ruhaiyem, N. I. R. Review of deep learning-based image inpainting techniques. IEEE Access 12, 138441–138482 (2024).

    Article 

    Google Scholar
     

  • Barcelos, I. M., Rabelo, T. B., Bernardini, F., Monteiro, R. S. & Fernandes, L. A. F. From past to present: a tertiary investigation of twenty-four years of image inpainting. Comput. Graphics 123, 104010 (2024).

    Article 

    Google Scholar
     

  • Elharrouss, O., Damseh, R., Belkacem, A. N., Badidi, E. & Lakas, A. Transformer-based image and video inpainting: current challenges and future directions. Artif. Intell. Rev. 58, 124 (2025).

    Article 

    Google Scholar
     

  • Li, H., Hu, L., Liu, J., Zhang, J. & Ma, T. A review of advances in image inpainting research. Imaging Sci. J. 72, 669–691 (2024).

    Article 

    Google Scholar
     

  • Bugeau, A., Bertalmío, M., Caselles, V. & Sapiro, G. A comprehensive framework for image inpainting. IEEE Trans. Image Process. 19, 2634–2645 (2010).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Khalid, S. et al. A review on traditional and artificial intelligence-based preservation techniques for oil painting artworks. Gels 10, 517 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sizyakin, R. et al. Crack detection in paintings using convolutional neural networks. IEEE Access 8, 74535–74552 (2020).

    Article 

    Google Scholar
     

  • Maali Amiri, M. & Messinger, D. W. Virtual cleaning of works of art using a deep generative network: spectral reflectance estimation. Heritage Sci. 11, 16 (2023).

    Article 

    Google Scholar
     

  • Palomero, C. M. T. & Soriano, M. N. Digital cleaning and “dirt” layer visualization of an oil painting. Opt. Express 19, 21011–21017 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Munoz-Pandiella, I., Andujar, C., Cayuela, B., Pueyo, X. & Bosch, C. Automated digital color restitution of mural paintings using minimal art historian input. Comput. Graphics 114, 316–325 (2023).

    Article 

    Google Scholar
     

  • Merizzi, F. et al. Deep image prior inpainting of ancient frescoes in the Mediterranean Alpine arc. Heritage Sci. 12, 41 (2024).

    Article 

    Google Scholar
     

  • Priego, E., Herráez, J., Denia, J. L. & Navarro, P. Technical study for restoration of mural paintings through the transfer of a photographic image to the vault of a church. J. Cult. Heritage 58, 112–121 (2022).

    Article 

    Google Scholar
     

  • Cricchio, C. The restoration of the panel painting depicting the Adoration of Shepherds with a Saint Bishop. CeROArt. Conservation, exposition, Restauration d’Objets d’Art https://doi.org/10.4000/ceroart.5224 (2017).

    Article 

    Google Scholar
     

  • Nocheseda, C. J. C., Santos, M. F. A., Espera, A. H. & Advincula, R. C. 3D digital manufacturing technologies, materials, and artificial intelligence in art. MRS Commun. 13, 1102–1118 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Elkhuizen, W. et al. Gloss, color, and topography scanning for reproducing a painting’s appearance using 3D printing. J. Comput. Cult. Heritage 12, 27:1–27:22 (2019).


    Google Scholar
     

  • Dardes, K. & Rothe, A. (eds.) The Structural Conservation of Panel Paintings: Proceedings of a Symposium at the J. Paul Getty Museum (Getty Publications, 1998).

  • Mecklenburg, M. F., Charola, A. E. & Koestler, R. J. (eds.) New Insights into the Cleaning of Paintings: Proceedings from the Cleaning 2010 International Conference (Smithsonian Institution Scholarly Press, 2019).

  • Yoo, W. S., Kang, K., Kim, J. G. & Yoo, Y. Extraction of color information and visualization of color differences between digital images through pixel-by-pixel color-difference mapping. Heritage 5, 3923 (2022).

    Article 

    Google Scholar
     

  • Antropov, S. & Bratasz, Ł. Development of craquelure patterns in paintings on panels. Heritage Sci. 12, 89 (2024).

    Article 

    Google Scholar
     

  • Karianakis, N. & Maragos, P. An integrated system for digital restoration of prehistoric Theran wall paintings. In 2013 18th International Conference on Digital Signal Processing (DSP) 1–6 (IEEE, 2013).

  • Ridderbos, B., van Buren, A. & van Veen, H. T. Early Netherlandish Paintings: Rediscovery, Reception, and Research (Getty Publications, 2005).


    Google Scholar
     

  • Crowe, J. The Early Flemish Painters: Notices of Their Lives and Works (John Murray, 1872).


    Google Scholar
     

  • Hand, J. O. & Wolff, M. Early Netherlandish Painting (National Gallery of Art, 1986).


    Google Scholar
     

  • de Loo, G. H. Hans Memlinc in Rogier van der Weyden’s Studio. Burlington Magazine for Connoisseurs 52, 160–177 (1928).


    Google Scholar
     

  • Cohen, E. J., Bravi, R., Bagni, M. A. & Minciacchi, D. Precision in drawing and tracing tasks: different measures for different aspects of fine motor control. Hum. Mov. Sci. 61, 177–188 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Komarova, N. L. & Jameson, K. A. A quantitative theory of human color choices. PLoS ONE 8, e55986 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emery, K. J. & Webster, M. A. Individual differences and their implications for color perception. Curr. Opin. Behav. Sci. 30, 28–33 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smet, K. A. G., Webster, M. A. & Whitehead, L. A. A simple principled approach for modeling and understanding uniform color metrics. J. Opt. Soc. Am. A Opt. Image. Sci. Vis. 33, A319–A331 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abasi, S., Amani Tehran, M. & Fairchild, M. D. Distance metrics for very large color differences. Color Res. Appl. 45, 208–223 (2020).

    Article 

    Google Scholar
     

  • Song, A., Faugeras, O. & Veltz, R. A neural field model for color perception unifying assimilation and contrast. PLoS Comput. Biol. 15, e1007050 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pazzaglia, M. et al. Loss and beauty: how experts and novices judge paintings with lacunae. Psychol. Res. 85, 1838–1847 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Saunders, D. Ultra-violet filters for artificial light sources. Tech. Bull. 13, 61–68 (1989).


    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments