Saturday, June 7, 2025
No menu items!
HomeNatureCoordination environments of Pt single-atom catalysts from NMR signatures

Coordination environments of Pt single-atom catalysts from NMR signatures

  • Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, S., Qin, R., Zheng, N. & Pérez-Ramírez, J. Nanoscale engineering of catalytic materials for sustainable technologies. Nat. Nanotechnol. 16, 129–139 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, T., Liu, J., Song, Y. & Wang, F. Photochemical solid-phase synthesis of platinum single atoms on nitrogen-doped carbon with high loading as bifunctional catalysts for hydrogen evolution and oxygen reduction reactions. ACS Catal. 8, 8450–8458 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kuang, P. et al. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Adv. Mater. 33, 2008599 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Büchele, S. et al. Elucidation of metal local environments in single-atom catalysts based on carbon nitrides. Small 18, 2202080 (2022).

    Article 

    Google Scholar
     

  • Mitchell, S., Vorobyeva, E. & Pérez-Ramírez, J. The multifaceted reactivity of single-atom heterogeneous catalysts. Angew. Chem. Int. Ed. 57, 15316–15329 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Sci. Adv. 6, eabb6833 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Liberto, G., Cipriano, L. A. & Pacchioni, G. Single atom catalysts: what matters most, the active site or the surrounding? ChemCatChem 14, e202200611 (2022).

    Article 

    Google Scholar
     

  • Korzyński, M. D. & Copéret, C. Single sites in heterogeneous catalysts: separating myth from reality. Trends Chem. 3, 850–862 (2021).

    Article 

    Google Scholar
     

  • Li, Y. & Frenkel, A. I. Deciphering the local environment of single-atom catalysts with X-ray absorption spectroscopy. Acc. Chem. Res. 54, 2660–2669 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L., Chang, X., Lin, X., Zhao, Z.-J. & Gong, J. Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 49, 8156–8178 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venkatesh, A. et al. Molecular and electronic structure of isolated platinum sites enabled by the expedient measurement of 195Pt chemical shift anisotropy. J. Am. Chem. Soc. 144, 13511–13525 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lucier, B. E. G., Reidel, A. R. & Schurko, R. W. Multinuclear solid-state NMR of square-planar platinum complexes — cisplatin and related systems. Can. J. Chem. 89, 919–937 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lucier, B. E. G. et al. Unravelling the structure of Magnus’ pink salt. J. Am. Chem. Soc. 136, 1333–1351 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi, T. et al. DNP-enhanced ultrawideline solid-state NMR spectroscopy: studies of platinum in metal–organic frameworks. J. Phys. Chem. Lett. 7, 2322–2327 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venkatesh, A. et al. The structure of molecular and surface platinum sites determined by DNP-SENS and fast MAS 195Pt solid-state NMR spectroscopy. J. Am. Chem. Soc. 142, 18936–18945 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Speciation and structures in Pt surface sites stabilized by N-heterocyclic carbene ligands revealed by dynamic nuclear polarization enhanced indirectly detected 195Pt NMR spectroscopic signatures and fingerprint analysis. J. Am. Chem. Soc. 144, 21530–21543 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Natural abundance 195Pt-13C correlation NMR spectroscopy on surfaces enabled by fast MAS dynamic nuclear polarization. J. Magn. Reson. Open 21, 100167 (2024).

    Article 

    Google Scholar
     

  • Herzfeld, J. & Berger, A. E. Sideband intensities in NMR spectra of samples spinning at the magic angle. J. Chem. Phys. 73, 6021–6030 (1980).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Massiot, D. et al. 71Ga and 69Ga nuclear magnetic resonance study of β-Ga2O3: resolution of four- and six-fold coordinated Ga sites in static conditions. Solid State Nucl. Magn. Reson. 4, 241–248 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Soorholtz, M. et al. Local platinum environments in a solid analogue of the molecular Periana catalyst. ACS Catal. 6, 2332–2340 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Schurko, R. W. Ultra-wideline solid-state NMR spectroscopy. Acc. Chem. Res. 46, 1985–1995 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhattacharyya, R. & Frydman, L. Quadrupolar nuclear magnetic resonance spectroscopy in solids using frequency-swept echoing pulses. J. Chem. Phys. 127, 194503 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • O’Dell, L. A. & Schurko, R. W. QCPMG using adiabatic pulses for faster acquisition of ultra-wideline NMR spectra. Chem. Phys. Lett. 464, 97–102 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Koppe, J., Frerichs, J. E. & Hansen, M. R. Pushing the detection limit of static wideline NMR spectroscopy using ultrafast frequency-swept pulses. J. Phys. Chem. Lett. 14, 10748–10753 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koppe, J., Bußkamp, M. & Hansen, M. R. Frequency-swept ultra-wideline magic-angle spinning NMR spectroscopy. J. Phys. Chem. A 125, 5643–5649 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Slichter, C. P. NMR study of platinum catalysts. Surf. Sci. 106, 382–396 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rhodes, H. E., Wang, P.-K., Stokes, H. T., Slichter, C. P. & Sinfelt, J. H. NMR of platinum catalysts. I. Line shapes. Phys. Rev. B 26, 3559–3568 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stokes, H. T. et al. NMR studies of platinum catalysts. J. Mol. Catal. 20, 321–325 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Bucher, J. P. et al. 195Pt NMR studies of supported catalysts. Colloids Surf. 36, 155–167 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Rees, G. J. et al. Characterisation of platinum-based fuel cell catalyst materials using 195Pt wideline solid state NMR. Phys. Chem. Chem. Phys. 15, 17195–17207 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hai, X. et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 17, 174–181 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Caër, G. L., Bureau, B. & Massiot, D. An extension of the Czjzek model for the distributions of electric field gradients in disordered solids and an application to NMR spectra of 71Ga in chalcogenide glasses. J. Phys. Condens. Matter 22, 065402 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kaiser, S. K. et al. Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. Nat. Catal. 3, 376–385 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bak, M., Rasmussen, J. T. & Nielsen, N. C. SIMPSON: a general simulation program for solid-state NMR spectroscopy. J. Magn. Reson. 147, 296–330 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kauffman, G. B., Teter, L. A. & Huheey, J. E. in Inorganic Syntheses (ed. Kleinberg, J.) 245–249 (Wiley, 1963).

  • Clark, H. C. & Manzer, L. E. Reactions of (π-1,5-cyclooctadiene) organoplatinum(II) compounds and the synthesis of perfluoroalkylplatinum complexes. J. Organomet. Chem. 59, 411–428 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Gioffrè, D., Rochlitz, L., Payard, P.-A., Yakimov, A. & Copéret, C. Grafting of group-10 organometallic complexes on silicas: differences and similarities, surprises and rationale. Helv. Chim. Acta 105, e202200073 (2022).

    Article 

    Google Scholar
     

  • Rossi, K. et al. Quantitative description of metal center organization and interactions in single-atom catalysts. Adv. Mater. 36, 2307991 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Fairley, N. et al. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. Adv. 5, 100112 (2021).

    Article 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kupce, E. & Freeman, R. Adiabatic pulses for wideband inversion and broadband decoupling. J. Magn. Reson. 115, 273–276 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carr, H. Y. & Purcell, E. M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630–638 (1954).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meiboom, S. & Gill, D. Modified spin‐echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691 (1958).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van Meerten, S. G. J., Franssen, W. M. J. & Kentgens, A. P. M. ssNake: a cross-platform open-source NMR data processing and fitting application. J. Magn. Reson. 301, 56–66 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tošner, Z. et al. Computer-intensive simulation of solid-state NMR experiments using SIMPSON. J. Magn. Reson. 246, 79–93 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Juhl, D. W., Tošner, Z. & Vosegaard, T. in Annual Reports on NMR Spectroscopy, Vol. 100 (ed. Webb, G. A.) 1–59 (Academic, 2020).

  • Czjzek, G. et al. Atomic coordination and the distribution of electric field gradients in amorphous solids. Phys. Rev. B 23, 2513–2530 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vasconcelos, F. et al. Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass. J. Phys. Condens. Matter 25, 255402 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).

    Article 

    Google Scholar
     

  • Autschbach, J. & Zheng, S. Analyzing Pt chemical shifts calculated from relativistic density functional theory using localized orbitals: The role of Pt 5d lone pairs. Magn. Reson. Chem. 46, 45–55 (2008).

    Article 

    Google Scholar
     

  • van Lenthe, E., Snijders, J. G. & Baerends, E. J. The zero‐order regular approximation for relativistic effects: the effect of spin–orbit coupling in closed shell molecules. J. Chem. Phys. 105, 6505–6516 (1996).

    Article 
    ADS 

    Google Scholar
     

  • van Lenthe, E., van Leeuwen, R., Baerends, E. J. & Snijders, J. G. Relativistic regular two-component Hamiltonians. Int. J. Quantum Chem. 57, 281–293 (1996).

    Article 

    Google Scholar
     

  • Koppe, J. et al. Data for “Coordination environments for Pt single-atom catalysts”. Zenodo https://doi.org/10.5281/zenodo.13381419 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments