Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).
Mitchell, S., Qin, R., Zheng, N. & Pérez-Ramírez, J. Nanoscale engineering of catalytic materials for sustainable technologies. Nat. Nanotechnol. 16, 129–139 (2021).
Li, T., Liu, J., Song, Y. & Wang, F. Photochemical solid-phase synthesis of platinum single atoms on nitrogen-doped carbon with high loading as bifunctional catalysts for hydrogen evolution and oxygen reduction reactions. ACS Catal. 8, 8450–8458 (2018).
Kuang, P. et al. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Adv. Mater. 33, 2008599 (2021).
Büchele, S. et al. Elucidation of metal local environments in single-atom catalysts based on carbon nitrides. Small 18, 2202080 (2022).
Mitchell, S., Vorobyeva, E. & Pérez-Ramírez, J. The multifaceted reactivity of single-atom heterogeneous catalysts. Angew. Chem. Int. Ed. 57, 15316–15329 (2018).
Li, X. et al. Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Sci. Adv. 6, eabb6833 (2020).
Di Liberto, G., Cipriano, L. A. & Pacchioni, G. Single atom catalysts: what matters most, the active site or the surrounding? ChemCatChem 14, e202200611 (2022).
Korzyński, M. D. & Copéret, C. Single sites in heterogeneous catalysts: separating myth from reality. Trends Chem. 3, 850–862 (2021).
Li, Y. & Frenkel, A. I. Deciphering the local environment of single-atom catalysts with X-ray absorption spectroscopy. Acc. Chem. Res. 54, 2660–2669 (2021).
Li, L., Chang, X., Lin, X., Zhao, Z.-J. & Gong, J. Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 49, 8156–8178 (2020).
Venkatesh, A. et al. Molecular and electronic structure of isolated platinum sites enabled by the expedient measurement of 195Pt chemical shift anisotropy. J. Am. Chem. Soc. 144, 13511–13525 (2022).
Lucier, B. E. G., Reidel, A. R. & Schurko, R. W. Multinuclear solid-state NMR of square-planar platinum complexes — cisplatin and related systems. Can. J. Chem. 89, 919–937 (2011).
Lucier, B. E. G. et al. Unravelling the structure of Magnus’ pink salt. J. Am. Chem. Soc. 136, 1333–1351 (2014).
Kobayashi, T. et al. DNP-enhanced ultrawideline solid-state NMR spectroscopy: studies of platinum in metal–organic frameworks. J. Phys. Chem. Lett. 7, 2322–2327 (2016).
Venkatesh, A. et al. The structure of molecular and surface platinum sites determined by DNP-SENS and fast MAS 195Pt solid-state NMR spectroscopy. J. Am. Chem. Soc. 142, 18936–18945 (2020).
Wang, Z. et al. Speciation and structures in Pt surface sites stabilized by N-heterocyclic carbene ligands revealed by dynamic nuclear polarization enhanced indirectly detected 195Pt NMR spectroscopic signatures and fingerprint analysis. J. Am. Chem. Soc. 144, 21530–21543 (2022).
Wang, Z. et al. Natural abundance 195Pt-13C correlation NMR spectroscopy on surfaces enabled by fast MAS dynamic nuclear polarization. J. Magn. Reson. Open 21, 100167 (2024).
Herzfeld, J. & Berger, A. E. Sideband intensities in NMR spectra of samples spinning at the magic angle. J. Chem. Phys. 73, 6021–6030 (1980).
Massiot, D. et al. 71Ga and 69Ga nuclear magnetic resonance study of β-Ga2O3: resolution of four- and six-fold coordinated Ga sites in static conditions. Solid State Nucl. Magn. Reson. 4, 241–248 (1995).
Soorholtz, M. et al. Local platinum environments in a solid analogue of the molecular Periana catalyst. ACS Catal. 6, 2332–2340 (2016).
Schurko, R. W. Ultra-wideline solid-state NMR spectroscopy. Acc. Chem. Res. 46, 1985–1995 (2013).
Bhattacharyya, R. & Frydman, L. Quadrupolar nuclear magnetic resonance spectroscopy in solids using frequency-swept echoing pulses. J. Chem. Phys. 127, 194503 (2007).
O’Dell, L. A. & Schurko, R. W. QCPMG using adiabatic pulses for faster acquisition of ultra-wideline NMR spectra. Chem. Phys. Lett. 464, 97–102 (2008).
Koppe, J., Frerichs, J. E. & Hansen, M. R. Pushing the detection limit of static wideline NMR spectroscopy using ultrafast frequency-swept pulses. J. Phys. Chem. Lett. 14, 10748–10753 (2023).
Koppe, J., Bußkamp, M. & Hansen, M. R. Frequency-swept ultra-wideline magic-angle spinning NMR spectroscopy. J. Phys. Chem. A 125, 5643–5649 (2021).
Slichter, C. P. NMR study of platinum catalysts. Surf. Sci. 106, 382–396 (1981).
Rhodes, H. E., Wang, P.-K., Stokes, H. T., Slichter, C. P. & Sinfelt, J. H. NMR of platinum catalysts. I. Line shapes. Phys. Rev. B 26, 3559–3568 (1982).
Stokes, H. T. et al. NMR studies of platinum catalysts. J. Mol. Catal. 20, 321–325 (1983).
Bucher, J. P. et al. 195Pt NMR studies of supported catalysts. Colloids Surf. 36, 155–167 (1989).
Rees, G. J. et al. Characterisation of platinum-based fuel cell catalyst materials using 195Pt wideline solid state NMR. Phys. Chem. Chem. Phys. 15, 17195–17207 (2013).
Hai, X. et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 17, 174–181 (2022).
Caër, G. L., Bureau, B. & Massiot, D. An extension of the Czjzek model for the distributions of electric field gradients in disordered solids and an application to NMR spectra of 71Ga in chalcogenide glasses. J. Phys. Condens. Matter 22, 065402 (2010).
Kaiser, S. K. et al. Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. Nat. Catal. 3, 376–385 (2020).
Bak, M., Rasmussen, J. T. & Nielsen, N. C. SIMPSON: a general simulation program for solid-state NMR spectroscopy. J. Magn. Reson. 147, 296–330 (2000).
Kauffman, G. B., Teter, L. A. & Huheey, J. E. in Inorganic Syntheses (ed. Kleinberg, J.) 245–249 (Wiley, 1963).
Clark, H. C. & Manzer, L. E. Reactions of (π-1,5-cyclooctadiene) organoplatinum(II) compounds and the synthesis of perfluoroalkylplatinum complexes. J. Organomet. Chem. 59, 411–428 (1973).
Gioffrè, D., Rochlitz, L., Payard, P.-A., Yakimov, A. & Copéret, C. Grafting of group-10 organometallic complexes on silicas: differences and similarities, surprises and rationale. Helv. Chim. Acta 105, e202200073 (2022).
Rossi, K. et al. Quantitative description of metal center organization and interactions in single-atom catalysts. Adv. Mater. 36, 2307991 (2024).
Fairley, N. et al. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. Adv. 5, 100112 (2021).
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).
Kupce, E. & Freeman, R. Adiabatic pulses for wideband inversion and broadband decoupling. J. Magn. Reson. 115, 273–276 (1995).
Carr, H. Y. & Purcell, E. M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630–638 (1954).
Meiboom, S. & Gill, D. Modified spin‐echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691 (1958).
van Meerten, S. G. J., Franssen, W. M. J. & Kentgens, A. P. M. ssNake: a cross-platform open-source NMR data processing and fitting application. J. Magn. Reson. 301, 56–66 (2019).
Tošner, Z. et al. Computer-intensive simulation of solid-state NMR experiments using SIMPSON. J. Magn. Reson. 246, 79–93 (2014).
Juhl, D. W., Tošner, Z. & Vosegaard, T. in Annual Reports on NMR Spectroscopy, Vol. 100 (ed. Webb, G. A.) 1–59 (Academic, 2020).
Czjzek, G. et al. Atomic coordination and the distribution of electric field gradients in amorphous solids. Phys. Rev. B 23, 2513–2530 (1981).
Vasconcelos, F. et al. Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass. J. Phys. Condens. Matter 25, 255402 (2013).
te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).
Autschbach, J. & Zheng, S. Analyzing Pt chemical shifts calculated from relativistic density functional theory using localized orbitals: The role of Pt 5d lone pairs. Magn. Reson. Chem. 46, 45–55 (2008).
van Lenthe, E., Snijders, J. G. & Baerends, E. J. The zero‐order regular approximation for relativistic effects: the effect of spin–orbit coupling in closed shell molecules. J. Chem. Phys. 105, 6505–6516 (1996).
van Lenthe, E., van Leeuwen, R., Baerends, E. J. & Snijders, J. G. Relativistic regular two-component Hamiltonians. Int. J. Quantum Chem. 57, 281–293 (1996).
Koppe, J. et al. Data for “Coordination environments for Pt single-atom catalysts”. Zenodo https://doi.org/10.5281/zenodo.13381419 (2025).