Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).
Bourassa, J. E. et al. Blueprint for a scalable photonic fault-tolerant quantum computer. Quantum 5, 392 (2021).
Konno, S. et al. Logical states for fault-tolerant quantum computation with propagating light. Science 383, 289–293 (2024).
Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J. & Grangier, P. Generating optical Schrödinger kittens for quantum information processing. Science 312, 83–86 (2006).
Neergaard-Nielsen, J. S., Nielsen, B. M., Hettich, C., Mølmer, K. & Polzik, E. S. Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006).
Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R. & Grangier, P. Generation of optical ‘Schrödinger cats’ from photon number states. Nature 448, 784–786 (2007).
Takahashi, H. et al. Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction. Phys. Rev. Lett. 101, 233605 (2008).
Gerrits, T. et al. Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum. Phys. Rev. A 82, 031802 (2010).
Etesse, J., Bouillard, M., Kanseri, B. & Tualle-Brouri, R. Experimental generation of squeezed cat states with an operation allowing iterative growth. Phys. Rev. Lett. 114, 193602 (2015).
Sychev, D. V. et al. Enlargement of optical Schrödinger’s cat states. Nat. Photon. 11, 379–382 (2017).
Simon, H., Caron, L., Journet, R., Cotte, V. & Tualle-Brouri, R. Experimental demonstration of a versatile and scalable scheme for iterative generation of non-Gaussian states of light. Phys. Rev. Lett. 133, 173603 (2024).
Aghaee Rad, H. et al. Scaling and networking a modular photonic quantum computer. Nature 638, 912–919 (2025).
Abadie, J. et al. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011).
Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).
Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).
O’Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264–267 (2003).
Migdall, A. L., Branning, D. & Castelletto, S. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66, 053805 (2002).
PsiQuantum team. A manufacturable platform for photonic quantum computing. Nature 641, 876–883 (2025).
Albert, V. V. et al. Performance and structure of single-mode bosonic codes. Phys. Rev. A 97, 032346 (2018).
Fukui, K., Alexander, R. N. & van Loock, P. All-optical long-distance quantum communication with Gottesman–Kitaev–Preskill qubits. Phys. Rev. Res. 3, 033118 (2021).
Rozpędek, F., Noh, K., Xu, Q., Guha, S. & Jiang, L. Quantum repeaters based on concatenated bosonic and discrete-variable quantum codes. npj Quantum Inf. 7, 102 (2021).
Duivenvoorden, K., Terhal, B. M. & Weigand, D. Single-mode displacement sensor. Phys. Rev. A. 95, 012305 (2017).
Walshe, B. W. et al. Linear-optical quantum computation with arbitrary error-correcting codes. Phys. Rev. Lett. 134, 100602 (2025).
Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).
Matsos, V. G. et al. Robust and deterministic preparation of bosonic logical states in a trapped ion. Phys. Rev. Lett. 133, 050602 (2024).
Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020).
Sivak, V. et al. Real-time quantum error correction beyond break-even. Nature 616, 50–55 (2023).
Lachance-Quirion, D. et al. Autonomous quantum error correction of Gottesman–Kitaev–Preskill states. Phys. Rev. Lett. 132, 150607 (2024).
Zhang, Y. et al. Squeezed light from a nanophotonic molecule. Nat. Commun. 12, 2233 (2021).
Braunstein, S. L. Squeezing as an irreducible resource. Phys. Rev. A 71, 055801 (2005).
Tzitrin, I., Bourassa, J. E., Menicucci, N. C. & Sabapathy, K. K. Progress towards practical qubit computation using approximate Gottesman–Kitaev–Preskill codes. Phys. Rev. A 101, 032315 (2020).
Mari, A. & Eisert, J. Positive Wigner functions render classical simulation of quantum computation efficient. Phys. Rev. Lett. 109, 230503 (2012).
Vasconcelos, H. M., Sanz, L. & Glancy, S. All-optical generation of states for ‘Encoding a qubit in an oscillator’. Opt. Lett. 35, 3261–3263 (2010).
Weigand, D. J. & Terhal, B. M. Generating grid states from Schrödinger-cat states without postselection. Phys. Rev. A 97, 022341 (2018).
Eaton, M., Nehra, R. & Pfister, O. Non-Gaussian and Gottesman–Kitaev–Preskill state preparation by photon catalysis. New J. Phys. 21, 113034 (2019).
Takase, K. et al. Generation of flying logical qubits using generalized photon subtraction with adaptive Gaussian operations. Phys. Rev. A 110, 012436 (2024).
Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).
Lvovsky, A. I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography. J. Opt. B Quantum Semiclassical Opt. 6, S556–S559 (2004).
Marek, P. Ground state nature and nonlinear squeezing of Gottesman–Kitaev–Preskill states. Phys. Rev. Lett. 132, 210601 (2024).