Saturday, June 7, 2025
No menu items!
HomeNatureIntegrated photonic source of Gottesman–Kitaev–Preskill qubits

Integrated photonic source of Gottesman–Kitaev–Preskill qubits

  • Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Bourassa, J. E. et al. Blueprint for a scalable photonic fault-tolerant quantum computer. Quantum 5, 392 (2021).

    Article 

    Google Scholar
     

  • Konno, S. et al. Logical states for fault-tolerant quantum computation with propagating light. Science 383, 289–293 (2024).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J. & Grangier, P. Generating optical Schrödinger kittens for quantum information processing. Science 312, 83–86 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Neergaard-Nielsen, J. S., Nielsen, B. M., Hettich, C., Mølmer, K. & Polzik, E. S. Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R. & Grangier, P. Generation of optical ‘Schrödinger cats’ from photon number states. Nature 448, 784–786 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, H. et al. Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction. Phys. Rev. Lett. 101, 233605 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gerrits, T. et al. Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum. Phys. Rev. A 82, 031802 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Etesse, J., Bouillard, M., Kanseri, B. & Tualle-Brouri, R. Experimental generation of squeezed cat states with an operation allowing iterative growth. Phys. Rev. Lett. 114, 193602 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sychev, D. V. et al. Enlargement of optical Schrödinger’s cat states. Nat. Photon. 11, 379–382 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Simon, H., Caron, L., Journet, R., Cotte, V. & Tualle-Brouri, R. Experimental demonstration of a versatile and scalable scheme for iterative generation of non-Gaussian states of light. Phys. Rev. Lett. 133, 173603 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aghaee Rad, H. et al. Scaling and networking a modular photonic quantum computer. Nature 638, 912–919 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abadie, J. et al. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264–267 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Migdall, A. L., Branning, D. & Castelletto, S. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66, 053805 (2002).

    Article 
    ADS 

    Google Scholar
     

  • PsiQuantum team. A manufacturable platform for photonic quantum computing. Nature 641, 876–883 (2025).

  • Albert, V. V. et al. Performance and structure of single-mode bosonic codes. Phys. Rev. A 97, 032346 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fukui, K., Alexander, R. N. & van Loock, P. All-optical long-distance quantum communication with Gottesman–Kitaev–Preskill qubits. Phys. Rev. Res. 3, 033118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rozpędek, F., Noh, K., Xu, Q., Guha, S. & Jiang, L. Quantum repeaters based on concatenated bosonic and discrete-variable quantum codes. npj Quantum Inf. 7, 102 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Duivenvoorden, K., Terhal, B. M. & Weigand, D. Single-mode displacement sensor. Phys. Rev. A. 95, 012305 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Walshe, B. W. et al. Linear-optical quantum computation with arbitrary error-correcting codes. Phys. Rev. Lett. 134, 100602 (2025).

  • Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Matsos, V. G. et al. Robust and deterministic preparation of bosonic logical states in a trapped ion. Phys. Rev. Lett. 133, 050602 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sivak, V. et al. Real-time quantum error correction beyond break-even. Nature 616, 50–55 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lachance-Quirion, D. et al. Autonomous quantum error correction of Gottesman–Kitaev–Preskill states. Phys. Rev. Lett. 132, 150607 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Squeezed light from a nanophotonic molecule. Nat. Commun. 12, 2233 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braunstein, S. L. Squeezing as an irreducible resource. Phys. Rev. A 71, 055801 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Tzitrin, I., Bourassa, J. E., Menicucci, N. C. & Sabapathy, K. K. Progress towards practical qubit computation using approximate Gottesman–Kitaev–Preskill codes. Phys. Rev. A 101, 032315 (2020).

  • Mari, A. & Eisert, J. Positive Wigner functions render classical simulation of quantum computation efficient. Phys. Rev. Lett. 109, 230503 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vasconcelos, H. M., Sanz, L. & Glancy, S. All-optical generation of states for ‘Encoding a qubit in an oscillator’. Opt. Lett. 35, 3261–3263 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weigand, D. J. & Terhal, B. M. Generating grid states from Schrödinger-cat states without postselection. Phys. Rev. A 97, 022341 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eaton, M., Nehra, R. & Pfister, O. Non-Gaussian and Gottesman–Kitaev–Preskill state preparation by photon catalysis. New J. Phys. 21, 113034 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Takase, K. et al. Generation of flying logical qubits using generalized photon subtraction with adaptive Gaussian operations. Phys. Rev. A 110, 012436 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lvovsky, A. I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography. J. Opt. B Quantum Semiclassical Opt. 6, S556–S559 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Marek, P. Ground state nature and nonlinear squeezing of Gottesman–Kitaev–Preskill states. Phys. Rev. Lett. 132, 210601 (2024).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments