Saturday, June 7, 2025
No menu items!
HomeNatureDynamic range and precision of hybrid vision sensors

Dynamic range and precision of hybrid vision sensors

  • Yang, Z. et al. A vision chip with complementary pathways for open-world sensing. Nature 629, 1027–1033 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Posch, C., Matolin, D. & Wohlgenannt, R. A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS. IEEE J. Solid State Circuits 46, 259–275 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Brandli, C., Berner, R., Yang, M., Liu, S.-C. & Delbruck, T. A 240×180 130 db 3 μs latency global shutter spatiotemporal vision sensor. IEEE J. Solid State Circuits 49, 2333–2341 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Li, C. et al. An RGBW color VGA rolling and global shutter dynamic and active-pixel vision sensor. In 2015 International Image Sensors Workshop https://doi.org/10.60928/mcuq-n7ak (IISS, 2015).

  • Guo, M. et al. A 3-wafer-stacked hybrid 15MPixel CIS + 1 MPixel EVS with 4.6GEvent/s readout, in-pixel TDC and on-chip ISP and ESP function. In 2023 IEEE International Solid-State Circuits Conference (ISSCC) 90–92 (IEEE, 2023).

  • Kodama, K. et al. A 1.22μm 35.6Mpixel RGB hybrid event-based vision sensor with 4.88μm-pitch event pixels and up to 10K event frame rate by adaptive control on event sparsity. In 2023 IEEE International Solid-State Circuits Conference (ISSCC) 92–93 (IEEE, 2023).

  • Ma, S.-Y. & Chen, L.-G. A single-chip CMOS APS camera with direct frame difference output. IEEE J. Solid State Circuits 34, 1415–1418 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Gruev, V. & Etienne-Cummings, R. A pipelined temporal difference imager. IEEE J. Solid State Circuits 39, 538–543 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Young, C., Omid-Zohoor, A., Lajevardi, P. & Murmann, B. A data-compressive 1.5/2.75-bit log-gradient QVGA image sensor with multi-scale readout for always-on object detection. IEEE J. Solid State Circuits 54, 2932–2946 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Niwa, A. et al. A 2.97μm-pitch event-based vision sensor with shared pixel front-end circuitry and low-noise intensity readout mode. In 2023 IEEE International Solid-State Circuits Conference (ISSCC) 94–95 (IEEE, 2023).

  • Park, G. et al. A 2.2μm stacked back side illuminated voltage domain global shutter CMOS image sensor. In 2019 IEEE International Electron Device Meeting (IEDM) 378–381 (IEEE, 2019).

  • Jinno, T. & Okuda, M. Multiple exposure fusion for high dynamic range image acquisition. IEEE. Trans. Image Process. 21, 358–365 (2011).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Lichtsteiner, P., Posch, C. & Delbruck, T. A 128×128 120 dB 15 μs latency asynchronous temporal contrast vision sensor. IEEE J. Solid State Circuits 43, 566–276 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Sakakibara, M. et al. A 6.9-μm pixel-pitch back-illuminated global shutter CMOS image sensor with pixel-parallel 14-bit subthreshold ADC. IEEE J. Solid State Circuits 53, 3017–3025 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Inose, H., Aoki, T. & Watanabe, K. Asynchronous delta modulation system. Electron. Lett. 2, 95–96 (1966).

    Article 
    ADS 

    Google Scholar
     

  • Yang, M., Liu, S.-C. & Delbruck, T. Analysis of encoding degradation in spiking sensors due to spike delay variation. IEEE Trans. Circuits Syst. I 64, 145–155 (2017).

  • Rebecq, H. et al. High-speed and high dynamic range video with an event camera. IEEE Trans. Pattern Anal. Mach. Intell. 43, 1964–1980 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Finateu, T. et al. A 1280×720 back-illuminated stacked temporal contrast event-based vision sensor with 4.86µm pixels, 1.066GEPS readout, programmable event-rate controller and compressive data-formatting pipeline. In 2020 IEEE International Solid-State Circuits Conference (ISSCC) 112–114 (IEEE, 2020).

  • RELATED ARTICLES

    Most Popular

    Recent Comments