Friday, June 6, 2025
No menu items!
HomeNatureAcetolysis for epoxy-amine carbon fibre-reinforced polymer recycling

Acetolysis for epoxy-amine carbon fibre-reinforced polymer recycling

  • Zhu, L., Li, N. & Childs, P. R. N. Light-weighting in aerospace component and system design. Propuls. Power Res. 7, 103–119 (2018).

    Article 

    Google Scholar
     

  • Zhang, W. & Xu, J. Advanced lightweight materials for automobiles: a review. Mater. Des. 221, 110994 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yildiz, T. Design and analysis of a lightweight composite shipping container made of carbon fiber laminates. Logistics 3, 18 (2019).

    Article 

    Google Scholar
     

  • Zhang, J., Chevali, V. S., Wang, H. & Wang, C.-H. Current status of carbon fibre and carbon fibre composites recycling. Compos. B Eng. 193, 108053 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Das, S. Life cycle assessment of carbon fiber-reinforced polymer composites. Int. J. Life Cycle Ass. 16, 268–282 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Nicholson, S. R., Rorrer, N. A., Carpenter, A. C. & Beckham, G. T. Manufacturing energy and greenhouse gas emissions associated with plastics consumption. Joule 5, 673–686 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Prenzel, T. M. et al. Bringing light into the dark—overview of environmental impacts of carbon fiber production and potential levers for reduction. Polymers 16, 12 (2024).

  • Liu, P., Meng, F. & Barlow, C. Y. Wind turbine blade end-of-life options: an economic comparison. Resour. Conserv. Recycl. 180, 106202 (2022).

    Article 

    Google Scholar
     

  • Winrow, M. When wind turbine blades get old what’s next? BBC News (12 March 2024); www.bbc.com/news/business-68225891.

  • Kim, M. Turbine blades have piled up in landfills. A solution may be coming. The New York Times (30 August 2024); www.nytimes.com/2024/08/30/climate/wind-turbine-recycling-climate.html.

  • Patel, P. Wind turbine blade recycling picks up speed. Chemical & Engineering News 102 (3 October 2024); https://cen.acs.org/environment/recycling/Wind-turbine-blade-recycling-picks/102/i31.

  • Isa, A. et al. A review on recycling of carbon fibres: Methods to reinforce and expected fibre composite degradations. Materials 15, 4991 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Synthesis, characterization, and recycling of bio-derivable polyester covalently adaptable networks for industrial composite applications. Matter 7, 550–568 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Karp, E. M. et al. Renewable acrylonitrile production. Science 358, 1307–1310 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pickering, S. J. Recycling technologies for thermoset composite materials—current status. Compos. A Appl. Sci. Manuf. 37, 1206–1215 (2006).

    Article 

    Google Scholar
     

  • Wu, X. et al. Closed-loop recyclability of a biomass-derived epoxy-amine thermoset by methanolysis. Science 384, eadj9989 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clarke, R. W. et al. Manufacture and testing of biomass-derivable thermosets for wind blade recycling. Science 385, 854–860 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salas, A. et al. Towards recycling of waste carbon fiber: strength, morphology and structural features of recovered carbon fibers. Waste Manage. 165, 59–69 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Naqvi, S. R. et al. A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resour. Conserv. Recycl. 136, 118–129 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pérez, R. L. et al. Recycling thermoset epoxy resin using alkyl-methyl-imidazolium ionic liquids as green solvents. ACS Appl. Polym. Mater. 3, 5588–5595 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliveux, G., Dandy, L. O. & Leeke, G. A. Degradation of a model epoxy resin by solvolysis routes. Polym. Degrad. Stab. 118, 96–103 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ballout, W. et al. High performance recycled CFRP composites based on reused carbon fabrics through sustainable mild solvolysis route. Sci. Rep. 12, 5928 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Chemical recycling of carbon fiber reinforced epoxy resin composites via selective cleavage of the carbon–nitrogen bond. ACS Sustain. Chem. Eng. 3, 3332–3337 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Xing, M. et al. Recycling of carbon fiber-reinforced epoxy resin composite via a novel acetic acid swelling technology. Compos. B Eng. 224, 109230 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Huan, X. et al. Phosphoric acid derived efficient reclaimation of carbon fibre for re-manufacturing high performance epoxy composites reinforced by highly-aligned mat with optimized layup. Compos. B Eng. 211, 108656 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Y. N. et al. Application of supercritical water for green recycling of epoxy-based carbon fiber reinforced plastic. Compos. Sci. Technol. 173, 66–72 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lo, J. N., Nutt, S. R. & Williams, T. J. Recycling benzoxazine–epoxy composites via catalytic oxidation. ACS Sustain. Chem. Eng. 6, 7227–7231 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ma, Y. & Nutt, S. Chemical treatment for recycling of amine/epoxy composites at atmospheric pressure. Polym. Degrad. Stab. 153, 307–317 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Navarro, C. A. et al. Mechanism and catalysis of oxidative degradation of fiber-reinforced epoxy composites. Top. Catal. 61, 704–709 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahrens, A. et al. Catalytic disconnection of C–O bonds in epoxy resins and composites. Nature 617, 730–737 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DiPucchio, R. C., Stevenson, K. R., Lahive, C. W., Michener, W. E. & Beckham, G. T. Base-mediated depolymerization of amine-cured epoxy resins. ACS Sustain. Chem. Eng. 11, 16946–16954 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, H. et al. Solvent–base mismatch enables the deconstruction of epoxy polymers and bisphenol A recovery. Green Chem. 26, 815–824 (2024).

  • Lim, Y. J., Yu, Z., Cherepakhin, V., Williams, T. J. & Nutt, S. R. Fiber and monomer recovery from an amine-cured epoxy composite using molten NaOH–KOH. Green Chem. 27, 2184–2188 (2025).

  • Shetty, S., Pinkard, B. R. & Novosselov, I. V. Recycling of carbon fiber reinforced polymers in a subcritical acetic acid solution. Heliyon 8, e12242 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pham, H. Q. & Marks, M. J. in Ullmann’s Encyclopedia of Industrial Chemistry 155–244 (Wiley-VCH, 2005).

  • Lei, Y.-Q., He, Z.-X., Luo, Y., Lu, S.-N. & Li, C.-J. Chemical degradation of bisphenol A diglycidyl ether/methyl tetrahydrophthalic anhydride networks by p-toluenesulfonic-acetic anhydride. Polym. Degrad. Stab. 123, 115–120 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Huang, J., He, C., Li, X., Pan, G. & Tong, H. Theoretical studies on thermal degradation reaction mechanism of model compound of bisphenol A polycarbonate. Waste Manage. 71, 181–191 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Guadagno, L. et al. Development of epoxy mixtures for application in aeronautics and aerospace. RSC Adv. 4, 15474–15488 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hedrick, J. L., Yilgör, I., Wilkes, G. L. & McGrath, J. E. Chemical modification of matrix resin networks with engineering thermoplastics. Polym. Bull. 13, 201–208 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Balaji, A. B., Rudd, C. & Liu, X. Recycled carbon fibers (rCF) in automobiles: towards circular economy. Mater. Circ. Econ. 2, 4 (2020).

    Article 

    Google Scholar
     

  • Satheese, M. & Pugazhvadivu, M. Flexural strength behavior of Al 6061 matrix reinforced with SiC and coconut shell ash. SSRG Int. J. Mech. Eng. 12–15 (2018).

  • Overview of materials for stainless steel. MatWeb www.matweb.com/search/DataSheet.aspx?MatGUID=71396e57ff5940b791ece120e4d563e0&ckck=1 (2025).

  • Nicholson, S. R. et al. The critical role of process analysis in chemical recycling and upcycling of waste plastics. Annu. Rev. Chem. Biomol. Eng. 13, 301–324 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nixon, K. D. et al. Analyses of circular solutions for advanced plastics waste recycling. Nat. Chem. Eng. 1, 615–626 (2024).

    Article 

    Google Scholar
     

  • Martin, R. W., Sabato, A., Schoenberg, A., Giles, R. H. & Niezrecki, C. Comparison of nondestructive testing techniques for the inspection of wind turbine blades’ spar caps. Wind Energy 21, 980–996 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Das, M., Chacko, R. & Varughese, S. An efficient method of recycling of CFRP waste using peracetic acid. ACS Sustain. Chem. Eng. 6, 1564–1571 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Heidarian, P., Mokhtari, F., Naebe, M., Henderson, L. C. & Varley, R. J. Reclamation and reformatting of waste carbon fibers: A paradigm shift towards sustainable waste management. Resour. Conserv. Recycl. 203, 107465 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ghosh, T., Kim, H. C., De Kleine, R., Wallington, T. J. & Bakshi, B. R. Life cycle energy and greenhouse gas emissions implications of using carbon fiber reinforced polymers in automotive components: front subframe case study. Sustain. Mater. Technol. 28, e00263 (2021).

    CAS 

    Google Scholar
     

  • Matrenichev, V., Lessa Belone, M. C., Palola, S., Laurikainen, P. & Sarlin, E. Resizing approach to increase the viability of recycled fibre-reinforced composites. Materials 13, 5773 (2020).

  • Ozdemir, T. et al. Carbon fiber composites recycling technology enabled by the TuFF technology. Recycling 9, 11 (2024).

    Article 

    Google Scholar
     

  • Yu, H., Potter, K. D. & Wisnom, M. R. A novel manufacturing method for aligned discontinuous fibre composites (high performance-discontinuous fibre). Compos. A Appl. Sci. Manuf. 65, 175–185 (2014).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments