Zhu, L., Li, N. & Childs, P. R. N. Light-weighting in aerospace component and system design. Propuls. Power Res. 7, 103–119 (2018).
Zhang, W. & Xu, J. Advanced lightweight materials for automobiles: a review. Mater. Des. 221, 110994 (2022).
Yildiz, T. Design and analysis of a lightweight composite shipping container made of carbon fiber laminates. Logistics 3, 18 (2019).
Zhang, J., Chevali, V. S., Wang, H. & Wang, C.-H. Current status of carbon fibre and carbon fibre composites recycling. Compos. B Eng. 193, 108053 (2020).
Das, S. Life cycle assessment of carbon fiber-reinforced polymer composites. Int. J. Life Cycle Ass. 16, 268–282 (2011).
Nicholson, S. R., Rorrer, N. A., Carpenter, A. C. & Beckham, G. T. Manufacturing energy and greenhouse gas emissions associated with plastics consumption. Joule 5, 673–686 (2021).
Prenzel, T. M. et al. Bringing light into the dark—overview of environmental impacts of carbon fiber production and potential levers for reduction. Polymers 16, 12 (2024).
Liu, P., Meng, F. & Barlow, C. Y. Wind turbine blade end-of-life options: an economic comparison. Resour. Conserv. Recycl. 180, 106202 (2022).
Winrow, M. When wind turbine blades get old what’s next? BBC News (12 March 2024); www.bbc.com/news/business-68225891.
Kim, M. Turbine blades have piled up in landfills. A solution may be coming. The New York Times (30 August 2024); www.nytimes.com/2024/08/30/climate/wind-turbine-recycling-climate.html.
Patel, P. Wind turbine blade recycling picks up speed. Chemical & Engineering News 102 (3 October 2024); https://cen.acs.org/environment/recycling/Wind-turbine-blade-recycling-picks/102/i31.
Isa, A. et al. A review on recycling of carbon fibres: Methods to reinforce and expected fibre composite degradations. Materials 15, 4991 (2022).
Wang, C. et al. Synthesis, characterization, and recycling of bio-derivable polyester covalently adaptable networks for industrial composite applications. Matter 7, 550–568 (2024).
Karp, E. M. et al. Renewable acrylonitrile production. Science 358, 1307–1310 (2017).
Pickering, S. J. Recycling technologies for thermoset composite materials—current status. Compos. A Appl. Sci. Manuf. 37, 1206–1215 (2006).
Wu, X. et al. Closed-loop recyclability of a biomass-derived epoxy-amine thermoset by methanolysis. Science 384, eadj9989 (2024).
Clarke, R. W. et al. Manufacture and testing of biomass-derivable thermosets for wind blade recycling. Science 385, 854–860 (2024).
Salas, A. et al. Towards recycling of waste carbon fiber: strength, morphology and structural features of recovered carbon fibers. Waste Manage. 165, 59–69 (2023).
Naqvi, S. R. et al. A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resour. Conserv. Recycl. 136, 118–129 (2018).
Pérez, R. L. et al. Recycling thermoset epoxy resin using alkyl-methyl-imidazolium ionic liquids as green solvents. ACS Appl. Polym. Mater. 3, 5588–5595 (2021).
Oliveux, G., Dandy, L. O. & Leeke, G. A. Degradation of a model epoxy resin by solvolysis routes. Polym. Degrad. Stab. 118, 96–103 (2015).
Ballout, W. et al. High performance recycled CFRP composites based on reused carbon fabrics through sustainable mild solvolysis route. Sci. Rep. 12, 5928 (2022).
Wang, Y. et al. Chemical recycling of carbon fiber reinforced epoxy resin composites via selective cleavage of the carbon–nitrogen bond. ACS Sustain. Chem. Eng. 3, 3332–3337 (2015).
Xing, M. et al. Recycling of carbon fiber-reinforced epoxy resin composite via a novel acetic acid swelling technology. Compos. B Eng. 224, 109230 (2021).
Huan, X. et al. Phosphoric acid derived efficient reclaimation of carbon fibre for re-manufacturing high performance epoxy composites reinforced by highly-aligned mat with optimized layup. Compos. B Eng. 211, 108656 (2021).
Kim, Y. N. et al. Application of supercritical water for green recycling of epoxy-based carbon fiber reinforced plastic. Compos. Sci. Technol. 173, 66–72 (2019).
Lo, J. N., Nutt, S. R. & Williams, T. J. Recycling benzoxazine–epoxy composites via catalytic oxidation. ACS Sustain. Chem. Eng. 6, 7227–7231 (2018).
Ma, Y. & Nutt, S. Chemical treatment for recycling of amine/epoxy composites at atmospheric pressure. Polym. Degrad. Stab. 153, 307–317 (2018).
Navarro, C. A. et al. Mechanism and catalysis of oxidative degradation of fiber-reinforced epoxy composites. Top. Catal. 61, 704–709 (2018).
Ahrens, A. et al. Catalytic disconnection of C–O bonds in epoxy resins and composites. Nature 617, 730–737 (2023).
DiPucchio, R. C., Stevenson, K. R., Lahive, C. W., Michener, W. E. & Beckham, G. T. Base-mediated depolymerization of amine-cured epoxy resins. ACS Sustain. Chem. Eng. 11, 16946–16954 (2023).
Sun, H. et al. Solvent–base mismatch enables the deconstruction of epoxy polymers and bisphenol A recovery. Green Chem. 26, 815–824 (2024).
Lim, Y. J., Yu, Z., Cherepakhin, V., Williams, T. J. & Nutt, S. R. Fiber and monomer recovery from an amine-cured epoxy composite using molten NaOH–KOH. Green Chem. 27, 2184–2188 (2025).
Shetty, S., Pinkard, B. R. & Novosselov, I. V. Recycling of carbon fiber reinforced polymers in a subcritical acetic acid solution. Heliyon 8, e12242 (2022).
Pham, H. Q. & Marks, M. J. in Ullmann’s Encyclopedia of Industrial Chemistry 155–244 (Wiley-VCH, 2005).
Lei, Y.-Q., He, Z.-X., Luo, Y., Lu, S.-N. & Li, C.-J. Chemical degradation of bisphenol A diglycidyl ether/methyl tetrahydrophthalic anhydride networks by p-toluenesulfonic-acetic anhydride. Polym. Degrad. Stab. 123, 115–120 (2016).
Huang, J., He, C., Li, X., Pan, G. & Tong, H. Theoretical studies on thermal degradation reaction mechanism of model compound of bisphenol A polycarbonate. Waste Manage. 71, 181–191 (2018).
Guadagno, L. et al. Development of epoxy mixtures for application in aeronautics and aerospace. RSC Adv. 4, 15474–15488 (2014).
Hedrick, J. L., Yilgör, I., Wilkes, G. L. & McGrath, J. E. Chemical modification of matrix resin networks with engineering thermoplastics. Polym. Bull. 13, 201–208 (1985).
Balaji, A. B., Rudd, C. & Liu, X. Recycled carbon fibers (rCF) in automobiles: towards circular economy. Mater. Circ. Econ. 2, 4 (2020).
Satheese, M. & Pugazhvadivu, M. Flexural strength behavior of Al 6061 matrix reinforced with SiC and coconut shell ash. SSRG Int. J. Mech. Eng. 12–15 (2018).
Overview of materials for stainless steel. MatWeb www.matweb.com/search/DataSheet.aspx?MatGUID=71396e57ff5940b791ece120e4d563e0&ckck=1 (2025).
Nicholson, S. R. et al. The critical role of process analysis in chemical recycling and upcycling of waste plastics. Annu. Rev. Chem. Biomol. Eng. 13, 301–324 (2022).
Nixon, K. D. et al. Analyses of circular solutions for advanced plastics waste recycling. Nat. Chem. Eng. 1, 615–626 (2024).
Martin, R. W., Sabato, A., Schoenberg, A., Giles, R. H. & Niezrecki, C. Comparison of nondestructive testing techniques for the inspection of wind turbine blades’ spar caps. Wind Energy 21, 980–996 (2018).
Das, M., Chacko, R. & Varughese, S. An efficient method of recycling of CFRP waste using peracetic acid. ACS Sustain. Chem. Eng. 6, 1564–1571 (2018).
Heidarian, P., Mokhtari, F., Naebe, M., Henderson, L. C. & Varley, R. J. Reclamation and reformatting of waste carbon fibers: A paradigm shift towards sustainable waste management. Resour. Conserv. Recycl. 203, 107465 (2024).
Ghosh, T., Kim, H. C., De Kleine, R., Wallington, T. J. & Bakshi, B. R. Life cycle energy and greenhouse gas emissions implications of using carbon fiber reinforced polymers in automotive components: front subframe case study. Sustain. Mater. Technol. 28, e00263 (2021).
Matrenichev, V., Lessa Belone, M. C., Palola, S., Laurikainen, P. & Sarlin, E. Resizing approach to increase the viability of recycled fibre-reinforced composites. Materials 13, 5773 (2020).
Ozdemir, T. et al. Carbon fiber composites recycling technology enabled by the TuFF technology. Recycling 9, 11 (2024).
Yu, H., Potter, K. D. & Wisnom, M. R. A novel manufacturing method for aligned discontinuous fibre composites (high performance-discontinuous fibre). Compos. A Appl. Sci. Manuf. 65, 175–185 (2014).