Friday, June 6, 2025
No menu items!
HomeNatureIschaemic endothelial necroptosis induces haemolysis and COVID-19 angiopathy

Ischaemic endothelial necroptosis induces haemolysis and COVID-19 angiopathy

  • Flaumenhaft, R., Enjyoji, K. & Schmaier, A. A. Vasculopathy in COVID-19. Blood 140, 222–235 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conway, E. M. et al. Understanding COVID-19-associated coagulopathy. Nat. Rev. Immunol. 22, 639–649 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mentzer, S. J., Ackermann, M. & Jonigk, D. Endothelialitis, microischemia, and intussusceptive angiogenesis in COVID-19. Cold Spring Harb. Perspect. Med. 12, a041157 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahamed, J. & Laurence, J. Long COVID endotheliopathy: hypothesized mechanisms and potential therapeutic approaches. J. Clin. Invest. 132, e161167 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osiaevi, I. et al. Persistent capillary rarefication in long COVID syndrome. Angiogenesis 26, 53–61 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rovas, A. et al. Microvascular dysfunction in COVID-19: the MYSTIC study. Angiogenesis 24, 145–157 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ackermann, M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Engl. J. Med. 383, 120–128 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heinrich, F., Mertz, K. D., Glatzel, M., Beer, M. & Krasemann, S. Using autopsies to dissect COVID-19 pathogenesis. Nat. Microbiol. 8, 1986–1994 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mackman, N., Antoniak, S., Wolberg, A. S., Kasthuri, R. & Key, N. S. Coagulation abnormalities and thrombosis in patients infected with SARS-CoV-2 and other pandemic viruses. Arterioscler. Thromb. Vasc. Biol. 40, 2033–2044 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rapkiewicz, A. V. et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: a case series. eClinicalMedicine 24, 100434 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonaventura, A. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 21, 319–329 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lupu, L., Palmer, A. & Huber-Lang, M. Inflammation, thrombosis, and destruction: the three-headed Cerberus of trauma- and SARS-CoV-2-induced ARDS. Front. Immunol. 11, 584514 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marchi, G. et al. Red blood cell morphologic abnormalities in patients hospitalized for COVID-19. Front. Physiol. 13, 932013 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johansson, P. I., Stensballe, J. & Ostrowski, S. R. Shock induced endotheliopathy (SHINE) in acute critical illness—a unifying pathophysiologic mechanism. Crit. Care 21, 25 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stegmayr, B., Abdel-Rahman, E. M. & Balogun, R. A. Septic shock with multiorgan failure: from conventional apheresis to adsorption therapies. Semin. Dial. 25, 171–175 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Aguado, J. et al. Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology. Nat. Aging 3, 1561–1575 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albornoz, E. A. et al. SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein. Mol. Psychiatry 28, 2878–2893 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, G. et al. SARS-CoV-2 promotes RIPK1 activation to facilitate viral propagation. Cell Res. 31, 1230–1243 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C., Wang, Z., Allen, R., Bishop, G. A. & Sharland, A. F. A modified method for heterotopic mouse heart transplantion. J. Vis. Exp. https://doi.org/10.3791/51423 (2014).

  • Choi, M. E., Price, D. R., Ryter, S. W. & Choi, A. M. K. Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight 4, e128834 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winn, R. K. & Harlan, J. M. The role of endothelial cell apoptosis in inflammatory and immune diseases. J. Thromb. Haemost. 3, 1815–1824 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bombeli, T., Karsan, A., Tait, J. F. & Harlan, J. M. Apoptotic vascular endothelial cells become procoagulant. Blood 89, 2429–2442 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bombeli, T., Schwartz, B. R. & Harlan, J. M. Endothelial cells undergoing apoptosis become proadhesive for nonactivated platelets. Blood 93, 3831–3838 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Linkermann, A. et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc. Natl Acad. Sci. USA 110, 12024–12029 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311–320 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nauta, A. J. et al. Mannose-binding lectin engagement with late apoptotic and necrotic cells. Eur. J. Immunol. 33, 2853–2863 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Navratil, J. S., Watkins, S. C., Wisnieski, J. J. & Ahearn, J. M. The globular heads of C1q specifically recognize surface blebs of apoptotic vascular endothelial cells. J. Immunol. 166, 3231–3239 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Afzali, B., Noris, M., Lambrecht, B. N. & Kemper, C. The state of complement in COVID-19. Nat. Rev. Immunol. 22, 77–84 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conway, E. M. & Pryzdial, E. L. G. Is the COVID-19 thrombotic catastrophe complement-connected? J. Thromb. Haemost. 18, 2812–2822 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magro, C. et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl. Res. 220, 1–13 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niederreiter, J. et al. Complement activation via the lectin and alternative pathway in patients with severe COVID-19. Front. Immunol. 13, 835156 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolb, W. P., Haxby, J. A., Arroyave, C. M. & Muller-Eberhard, H. J. Molecular analysis of the membrane attack mechanism of complement. J. Exp. Med. 135, 549–566 (1972).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keep, R. F. et al. Brain endothelial cell junctions after cerebral hemorrhage: changes, mechanisms and therapeutic targets. J. Cereb. Blood Flow Metab. 38, 1255–1275 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scarabelli, T. et al. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 104, 253–256 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Etulain, J. et al. Acidosis downregulates platelet haemostatic functions and promotes neutrophil proinflammatory responses mediated by platelets. Thromb. Haemost. 107, 99–110 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng, Z. H., Wolberg, A. S., Monroe, D. M. 3rd & Hoffman, M. The effect of temperature and pH on the activity of factor VIIa: implications for the efficacy of high-dose factor VIIa in hypothermic and acidotic patients. J. Trauma 55, 886–891 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ataga, K. I. et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N. Engl. J. Med. 376, 429–439 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, W. et al. RGMb protects against acute kidney injury by inhibiting tubular cell necroptosis via an MLKL-dependent mechanism. Proc. Natl Acad. Sci. USA 115, E1475–E1484 (2018).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stempien-Otero, A. et al. Mechanisms of hypoxia-induced endothelial cell death: role of p53 in apoptosis. J. Biol. Chem. 274, 8039–8045 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uria-Avellanal, C. & Robertson, N. J. Na+/H+ exchangers and intracellular pH in perinatal brain injury. Transl. Stroke Res. 5, 79–98 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kenawy, H. I., Boral, I. & Bevington, A. Complement-coagulation cross-talk: a potential mediator of the physiological activation of complement by low pH. Front. Immunol. 6, 215 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akhter, N. et al. Impact of COVID-19 on the cerebrovascular system and the prevention of RBC lysis. Eur. Rev. Med. Pharmacol. Sci. 24, 10267–10278 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Bouchla, A. et al. Red blood cell abnormalities as the mirror of SARS-CoV-2 disease severity: a pilot study. Front. Physiol. 12, 825055 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cervia-Hasler, C. et al. Persistent complement dysregulation with signs of thromboinflammation in active long Covid. Science 383, eadg7942 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kloner, R. A., King, K. S. & Harrington, M. G. No-reflow phenomenon in the heart and brain. Am. J. Physiol. Heart Circ. Physiol. 315, H550–H562 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zille, M. et al. The impact of endothelial cell death in the brain and its role after stroke: a systematic review. Cell Stress 3, 330–347 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Myeloid-derived MIF drives RIPK1-mediated cerebromicrovascular endothelial cell death to exacerbate ischemic brain injury. Proc. Natl Acad. Sci. USA 120, e2219091120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenzel, J. et al. The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat. Neurosci. 24, 1522–1533 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niccoli, G., Scalone, G., Lerman, A. & Crea, F. Coronary microvascular obstruction in acute myocardial infarction. Eur. Heart J. 37, 1024–1033 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443–453 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yap, C. L. et al. Synergistic adhesive interactions and signaling mechanisms operating between platelet glycoprotein Ib/IX and integrin αIIbβ3. J. Biol. Chem. 275, 41377–41388 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, M. C. et al. The receptor for complement component C3a mediates protection from intestinal ischemia-reperfusion injuries by inhibiting neutrophil mobilization. Proc. Natl Acad. Sci. USA 110, 9439–9444 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, Y. et al. Neutrophil macroaggregates promote widespread pulmonary thrombosis after gut ischemia. Sci. Transl. Med. 9, eaam5861 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Maclean, J. A. A. et al. Development of a carotid artery thrombolysis stroke model in mice. Blood Adv. 6, 5449–5462 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bialkowska, A. B., Ghaleb, A. M., Nandan, M. O. & Yang, V. W. Improved Swiss-rolling technique for intestinal tissue preparation for immunohistochemical and immunofluorescent analyses. J. Vis. Exp. https://doi.org/10.3791/54161 (2016).

  • Chiu, C. J., McArdle, A. H., Brown, R., Scott, H. J. & Gurd, F. N. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch. Surg. 101, 478–483 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shami, G. J. et al. 3-D EM exploration of the hepatic microarchitecture—lessons learned from large-volume in situ serial sectioning. Sci. Rep. 6, 36744 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strilic, B. et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature 536, 215–218 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Majno, G. & Joris, I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 146, 3–15 (1995).

  • Gujral. J. S., Knight, T. R., Farhood, A., Bajt, M. L. & Jaeschke. H. Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol. Sci. 67, 322–388 (2002).

  • RELATED ARTICLES

    Most Popular

    Recent Comments