Sunday, June 1, 2025
No menu items!
HomeNatureRadiative forcing reduced by early twenty-first century increase in land albedo

Radiative forcing reduced by early twenty-first century increase in land albedo

  • Turner, B. L., Lambin, E. F. & Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl Acad. Sci. USA 104, 20666–20671 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pongratz, J., Reick, C. H., Raddatz, T. & Claussen, M. Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophys. Res. Lett. 37, L08702 (2010).

  • Forzieri, G., Alkama, R., Miralles, D. G. & Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science 356, 1180–1184 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ouyang, Z. et al. Albedo changes caused by future urbanization contribute to global warming. Nat. Commun. 13, 3800 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherwood, S. C., Dixit, V. & Salomez, C. The global warming potential of near-surface emitted water vapour. Environ. Res. Lett. 13, 104006 (2018).

    Article 

    Google Scholar
     

  • Andrews, T., Betts, R. A., Booth, B. B. B., Jones, C. D. & Jones, G. S. Effective radiative forcing from historical land use change. Clim. Dyn. 48, 3489–3505 (2017).

    Article 

    Google Scholar
     

  • Lejeune, Q. et al. Biases in the albedo sensitivity to deforestation in CMIP5 models and their impacts on the associated historical radiative forcing. Earth Syst. Dyn. 11, 1209–1232 (2020).

    Article 

    Google Scholar
     

  • Ghimire, B. et al. Global albedo change and radiative cooling from anthropogenic land cover change, 1700 to 2005 based on MODIS, land use harmonization, radiative kernels, and reanalysis. Geophys. Res. Lett. 41, 9087–9096 (2014).

    Article 

    Google Scholar
     

  • Hasler, N. et al. Accounting for albedo change to identify climate-positive tree cover restoration. Nat. Commun. 15, 2275 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Betts, R. A., Falloon, P. D., Goldewijk, K. K. & Ramankutty, N. Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature change. Agric. For. Meteorol. 142, 216–233 (2007).

    Article 

    Google Scholar
     

  • Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bright, R. M., Zhao, K., Jackson, R. B. & Cherubini, F. Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. Glob. Change Biol. 21, 3246–3266 (2015).

    Article 

    Google Scholar
     

  • Weber, J. et al. Chemistry-albedo feedbacks offset up to a third of forestation’s CO2 removal benefits. Science 383, 860–864 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on earth’s surface energy balance. Nat. Commun. 9, 679 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, R. G. et al. Biophysical considerations in forestry for climate protection. Front. Ecol. Environ. 9, 174–182 (2011).

    Article 

    Google Scholar
     

  • Schaaf, C. Z. W. MODIS/terra + aqua BRDF/albedo daily L3 Global—500 m V061. NASA Earth Data https://doi.org/10.5067/MODIS/MCD43A3.061 (2021).

  • Dumont, M. et al. Contribution of light-absorbing impurities in snow to Greenland’s darkening since 2009. Nat. Geosci. 7, 509–512 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xu, X., Huang, A., Belle, E., De Frenne, P. & Jia, G. Protected areas provide thermal buffer against climate change. Sci. Adv. 8, 0119 (2022).

    Article 

    Google Scholar
     

  • Venter, Z. S., Chakraborty, T. & Lee, X. Crowdsourced air temperatures contrast satellite measures of the urban heat island and its mechanisms. Sci. Adv. 7, 9569 (2021).

    Article 

    Google Scholar
     

  • Guirado, E. et al. The global biogeography and environmental drivers of fairy circles. Proc. Natl Acad. Sci. USA 120, 2304032120 (2023).

    Article 

    Google Scholar
     

  • Jääskeläinen, E., Manninen, T., Hakkarainen, J. & Tamminen, J. Filling gaps of black-sky surface albedo of the Arctic sea ice using gradient boosting and brightness temperature data. Int. J. Appl. Earth Observ. Geoinf. 107, 102701 (2022).


    Google Scholar
     

  • Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, N. F. et al. A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data. Hydrol. Earth Syst. Sci. 17, 2121–2129 (2013).

    Article 

    Google Scholar
     

  • Hall, D. K., Salomonson, V. V. & Riggs, G. A. MODIS/terra snow cover daily L3 global 500 m grid. Version 6. NSIDC https://nsidc.org/data/mod10a1/versions/61 (2016).

  • Friedl, M. & Sulla-Menashe., D. MODIS/terra+aqua land cover type yearly L3 global 500m SIN grid V061. NASA Earth Data https://doi.org/10.5067/MODIS/MCD12Q1.061 (2022).

  • Casey, K. A., Polashenski, C. M., Chen, J. & Tedesco, M. Impact of MODIS sensor calibration updates on Greenland Ice Sheet surface reflectance and albedo trends. Cryosphere 11, 1781–1795 (2017).

    Article 

    Google Scholar
     

  • Di Gregorio, A. Land Cover Classification System: Classification Concepts and User Manual Softwave V2 (Food and Agriculture Organization of the United Nations (FAO), 2005).


    Google Scholar
     

  • Di Gregorio, A. & Jansen, L. J. M. A new concept for a land-cover classification system. Land 2, 55–65 (1998).


    Google Scholar
     

  • Loveland, T. R. & Belward, A. S. The igbp-dis global 1km land cover data set, discover: first results. Int. J. Remote Sens. 18, 3289–3295 (1997).

    Article 

    Google Scholar
     

  • Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P. & Friedl, M. A. Hierarchical mapping of annual global land cover 2001 to present: the MODIS collection 6 land cover product. Remote Sens. Environ. 222, 183–194 (2019).

    Article 

    Google Scholar
     

  • Tian, J. et al. Simultaneous estimation of fractional cover of photosynthetic and non-photosynthetic vegetation using visible-near infrared satellite imagery. Remote Sens. Environ. 290, 113549 (2023).

    Article 

    Google Scholar
     

  • Wang, L. & Qu, J. J. NMDI: a normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett. 34, L20405 (2007).

  • Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cui, J. et al. Global water availability boosted by vegetation-driven changes in atmospheric moisture transport. Nat. Geosci. 15, 982–988 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, S. et al. Multi-staged NDVI dependent snow-free land-surface shortwave albedo narrowband-to-broadband (NTB) coefficients and their sensitivity analysis. Remote Sens. 9, 93 (2017).

    Article 

    Google Scholar
     

  • Ma, Z., Xie, Y., Jiao, J., li, L. & Wang, X. The construction and application of an albedo-NDVI based desertification monitoring model. Procedia Environ. Sci. 10, 2029–2035 (2011).

    Article 

    Google Scholar
     

  • Pang, G., Chen, D., Wang, X. & Lai, H.-W. Spatiotemporal variations of land surface albedo and associated influencing factors on the Tibetan Plateau. Sci. Total Environ. 804, 150100 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newnham, G. J., Verbesselt, J., Grant, I. F. & Anderson, S. A. J. Relative Greenness Index for assessing curing of grassland fuel. Remote Sens. Environ. 115, 1456–1463 (2011).

    Article 

    Google Scholar
     

  • Guerschman, J. P. et al. Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors. Remote Sens. Environ. 113, 928–945 (2009).

    Article 

    Google Scholar
     

  • Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article 

    Google Scholar
     

  • Qiu, B. et al. Dense canopies browning overshadowed by global greening dominant in sparse canopies. Sci. Total Environ. 826, 154222 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hall, D. K., Riggs, G. A., DiGirolamo, N. E. & Román, M. O. Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an earth science data record. Hydrol. Earth Syst. Sci. 23, 5227–5241 (2019).

    Article 

    Google Scholar
     

  • Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proc. 1968 23rd ACM National Conf. (eds Blue, R. B. & Rosenberg, A. M.) 517–524 (Association for Computing Machinery, 1968).

  • Román, M. O. et al. Continuity between NASA MODIS Collection 6.1 and VIIRS Collection 2 land products. Remote Sens. Environ. 302, 113963 (2024).

    Article 

    Google Scholar
     

  • Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorological Soc. 77, 437–472 (1996).

    Article 

    Google Scholar
     

  • Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strahler, A. H., Muller, J.-P. & Members, M. S. T. MODIS BRDF/Albedo Product: Algorithm Theoretical Basis Document Version 5.0 (USGS, 1999).


    Google Scholar
     

  • Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).

    Article 

    Google Scholar
     

  • Houldcroft, C. J. et al. New vegetation albedo parameters and global fields of soil background albedo derived from MODIS for use in a climate model. J. Hydrometeorol. 10, 183–198 (2009).

    Article 

    Google Scholar
     

  • Vermote, E. MODIS/terra surface reflectance 8-day L3 global 500 m SIN Grid V061. NASA Earth Data https://doi.org/10.5067/MODIS/MOD09A1.061 (2021).

  • Pendergrass, A. G., Conley, A. & Vitt, F. M. Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5. Earth Syst. Sci. Data 10, 317–324 (2018).

    Article 

    Google Scholar
     

  • Smith, C. J. et al. Understanding rapid adjustments to diverse forcing agents. Geophys. Res. Lett. 45, 12023–12031 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, C. J., Kramer, R. J. & Sima, A. The HadGEM3-GA7.1 radiative kernel: the importance of a well-resolved stratosphere. Earth Syst. Sci. Data 12, 2157–2168 (2020).

    Article 

    Google Scholar
     

  • Block, K. & Mauritsen, T. Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO2. J. Adv. Model. Earth Syst. 5, 676–691 (2013).

    Article 

    Google Scholar
     

  • Huang, Y., Xia, Y. & Tan, X. On the pattern of CO2 radiative forcing and poleward energy transport. J. Geophys. Res. Atmos. 122, 10578–10593 (2017).

    Article 

    Google Scholar
     

  • Huang, H. & Huang, Y. Radiative sensitivity quantified by a new set of radiation flux kernels based on the ECMWF Reanalysis v5 (ERA5). Earth Syst. Sci. Data 15, 3001–3021 (2023).

    Article 

    Google Scholar
     

  • Liu, Q. et al. Preliminary evaluation of the long-term glass albedo product. Int. J. Digital Earth 6, 69–95 (2013).

    Article 

    Google Scholar
     

  • How, P. et al. PROMICE and GC-Net automated weather station data in Greenland. GEUS Dataverse https://doi.org/10.22008/FK2/IW73UU (2022).

  • Klein, A. & Stroeve, J. C. Development and validation of a snow albedo algorithm for the MODIS instrument. Ann. Glaciol. 34, 45–52 (2002).

    Article 

    Google Scholar
     

  • Burakowski, E. A. et al. Spatial scaling of reflectance and surface albedo over a mixed-use, temperate forest landscape during snow-covered periods. Remote Sens. Environ. 158, 465–477 (2015).

    Article 

    Google Scholar
     

  • Tedesco, M. et al. The darkening of the Greenland ice sheet: trends, drivers, and projections (1981-2100). Cryosphere 10, 477–496 (2016).

    Article 

    Google Scholar
     

  • Sun, Y., Wang, Y., Zhai, Z. & Zhou, M. Changes in the Antarctic’s summer surface albedo, observed by satellite since 1982 and associated with sea ice anomalies. Remote Sens. 15, 4940 (2023).

    Article 

    Google Scholar
     

  • Ryan, J. C. et al. How robust are in situ observations for validating satellite-derived albedo over the dark zone of the Greenland Ice Sheet? Geophys. Res. Lett. 44, 6218–6225 (2017).

    Article 

    Google Scholar
     

  • Ye, F. et al. Reconstructing daily snow and ice albedo series for Greenland by coupling spatiotemporal and physics-informed models. Int. J. Appl. Earth Observ. Geoinf. 124, 103519 (2023).


    Google Scholar
     

  • Franz, B., Kwiatkowska, E., Meister, G. & Mcclain, C. Moderate resolution imaging spectroradiometer on Terra: limitations for ocean color applications. J. Appl. Remote Sens. 2, 023525 (2008).

    Article 

    Google Scholar
     

  • Xiong, X., Sun, J., Xie, X., Barnes, W. L. & Salomonson, V. V. On-orbit calibration and performance of Aqua MODIS reflective solar bands. IEEE Trans. Geosci. Remote Sens. 48, 535–546 (2010).

    Article 

    Google Scholar
     

  • Lyapustin, A. et al. Scientific impact of MODIS C5 calibration degradation and C6+ improvements. Atmos. Meas. Tech. 7, 4353–4365 (2014).

    Article 

    Google Scholar
     

  • Bhatt, R. et al. Response versus scan-angle assessment of MODIS reflective solar bands in Collection 6.1 calibration. IEEE Trans. Geosci. Remote Sens. 58, 2276–2289 (2020).

    Article 

    Google Scholar
     

  • Angal, A., Xiong, X., Wu, A., Geng, X. & Chen, H. Improvements in the on-orbit response versus scan angle characterization of the Aqua MODIS reflective solar bands. IEEE Trans. Geosci. Remote Sens. 56, 1728–1738 (2018).

    Article 

    Google Scholar
     

  • Smith, C. J. et al. Effective radiative forcing and adjustments in CMIP6 models. Atmos. Chem. Phys. 20, 9591–9618 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117 (2011).

    Article 

    Google Scholar
     

  • Feng, G. et al. Multiscale climatological albedo look-up maps derived from moderate resolution imaging spectroradiometer BRDF/albedo products. J. Appl. Remote Sens. 8, 083532 (2014).

    Article 

    Google Scholar
     

  • Román, M. O. et al. Assessing the coupling between surface albedo derived from MODIS and the fraction of diffuse skylight over spatially-characterized landscapes. Remote Sens. Environ. 114, 738–760 (2010).

    Article 

    Google Scholar
     

  • Hou, Z. ALLUMs. Zenodo https://doi.org/10.5281/zenodo.13981585 (2025).

  • Hou, Z. ALLUMs codes. Zenodo https://doi.org/10.5281/zenodo.14955081 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments