Thursday, May 22, 2025
No menu items!
HomeNatureA retrograde planet in a tight binary star system with a white...

A retrograde planet in a tight binary star system with a white dwarf

  • Artymowicz, P. & Lubow, S. H. Dynamics of binary-disk interaction. I. Resonances and disk gap sizes. Astrophys. J. 421, 651–667 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Zsom, A., Sándor, Z. & Dullemond, C. P. The first stages of planet formation in binary systems: how far can dust coagulation proceed? Astron. Astrophys. 527, A10 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Kraus, A. L., Ireland, M. J., Hillenbrand, L. A. & Martinache, F. The role of multiplicity in disk evolution and planet formation. Astrophys. J. 745, 19 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Manara, C. F. et al. Observational constraints on dust disk sizes in tidally truncated protoplanetary disks in multiple systems in the Taurus region. Astron. Astrophys. 628, A95 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Thébault, P., Marzari, F., Scholl, H., Turrini, D. & Barbieri, M. Planetary formation in the γ Cephei system. Astron. Astrophys. 427, 1097–1104 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Thébault, P., Marzari, F. & Scholl, H. Relative velocities among accreting planetesimals in binary systems: the circumprimary case. Icarus 183, 193–206 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Thébault, P., Marzari, F. & Scholl, H. Planet formation in α Centauri A revisited: not so accretion friendly after all. Mon. Not. R. Astron. Soc. 388, 1528–1536 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Thébault, P., Marzari, F. & Scholl, H. Planet formation in the habitable zone of α Centauri B. Mon. Not. R. Astron. Soc. 393, L21–L25 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Holman, M. J. & Wiegert, P. A. Long-term stability of planets in binary systems. Astron. J. 117, 621–628 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J., Xie, J.-W., Barclay, T. & Fischer, D. A. Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 AU and validation of four planets from the Kepler multiple planet candidates. Astrophys. J. 783, 4 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J., Fischer, D. A., Xie, J.-W. & Ciardi, D. R. Influence of Stellar Multiplicity on Planet Formation. II. Planets are Less Common in Multiple-star Systems with Separations Smaller than 1500 AU. Astrophys. J. 791, 111 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kraus, A. L., Ireland, M. J., Huber, D., Mann, A. W. & Dupuy, T. J. The impact of stellar multiplicity on planetary systems. I. The ruinous influence of close binary companions. Astron. J. 152, 8 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Moe, M. & Kratter, K. M. Impact of binary stars on planet statistics – I. Planet occurrence rates and trends with stellar mass. Mon. Not. R. Astron. Soc. 507, 3593–3611 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ramm, D. J., Pourbaix, D., Hearnshaw, J. B. & Komonjinda, S. Spectroscopic orbits for K giants β Reticuli and ν Octantis: what is causing a low-amplitude radial velocity resonant perturbation in ν Oct? Mon. Not. R. Astron. Soc. 394, 1695–1710 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Eberle, J. & Cuntz, M. On the reality of the suggested planet in the ν Octantis system. Astrophys. J. Lett. 721, L168–L171 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Quarles, B., Cuntz, M. & Musielak, Z. The stability of the suggested planet in the ν Octantis system: a numerical and statistical study. Mon. Not. R. Astron. Soc. 421, 2930–2939 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Goździewski, K., Słonina, M., Migaszewski, C. & Rozenkiewicz, A. Testing a hypothesis of the ν Octantis planetary system. Mon. Not. R. Astron. Soc. 430, 533–545 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ramm, D. J. Line-depth-ratio temperatures for the close binary ν Octantis: new evidence supporting the conjectured circumstellar retrograde planet. Mon. Not. R. Astron. Soc. 449, 4428–4442 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ramm, D. J. et al. The conjectured S-type retrograde planet in ν Octantis: more evidence including four years of iodine-cell radial velocities. Mon. Not. R. Astron. Soc. 460, 3706–3719 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ramm, D. J. et al. A photospheric and chromospheric activity analysis of the quiescent retrograde-planet host ν Octantis A. Mon. Not. R. Astron. Soc. 502, 2793–2806 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mayor, M. et al. Setting new standards with HARPS. Messenger 114, 20–24 (2003).

    ADS 

    Google Scholar
     

  • Hearnshaw, J. B. et al. The Hercules Échelle Spectrograph at Mt. John. Exp. Astron. 13, 59–76 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Higson, E., Handley, W., Hobson, M. & Lasenby, A. Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation. Stat. Comput. 29, 891–913 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • European Space Agency. The Hipparcos and Tycho Catalogues: Astrometric and Photometric Star Catalogues Derived from the ESA Hipparcos Space Astrometry Mission (ESA, 1997).

  • Hurley, J. R., Tout, C. A. & Pols, O. R. Evolution of binary stars and the effect of tides on binary populations. Mon. Not. R. Astron. Soc. 329, 897–928 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Stock, S., Reffert, S. & Quirrenbach, A. Precise radial velocities of giant stars. X. Bayesian stellar parameters and evolutionary stages for 372 giant stars from the Lick planet search. Astron. Astrophys. 616, A33 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Beuzit, J.-L. et al. SPHERE: the exoplanet imager for the Very Large Telescope. Astron. Astrophys. 631, A155 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tout, C. A. & Eggleton, P. P. Tidal enhancement by a binary companion of stellar winds from cool giants. Mon. Not. R. Astron. Soc. 231, 823–831 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Lee, M. H. et al. Dynamics of circumstellar planets in binary star systems. In Proc. Kavli-IAU Symposium No. 382 Complex Planetary Systems II (eds Lemaitre, A. & Libert, A.-S.) 12–19 (2024).

  • Sepinsky, J. F., Willems, B. & Kalogera, V. Equipotential Surfaces and Lagrangian Points in Nonsynchronous, Eccentric Binary and Planetary Systems. Astron. J. 660, 1624 (2007).

    Article 

    Google Scholar
     

  • Perets, H. B. Planets in evolved binary systems. AIP Conf. Proc. 1331, 56–75 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Perets, H. B. & Kenyon, S. J. Wind-accretion disks in wide binaries, second-generation protoplanetary disks, and accretion onto white dwarfs. Astrophys. J. 764, 169 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Huarte-Espinosa, M., Carroll-Nellenback, J., Nordhaus, J., Frank, A. & Blackman, E. G. The formation and evolution of wind-capture discs in binary systems. Mon. Not. R. Astron. Soc. 433, 295–306 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lee, Y.-M., Kim, H. & Lee, H.-W. Formation of the asymmetric accretion disk from stellar wind accretion in an S-type symbiotic star. Astrophys. J. 931, 142 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lidov, M. L. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9, 719–759 (1962).

    Article 
    ADS 

    Google Scholar
     

  • Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Rodriguez, D. R., Kastner, J. H., Wilner, D. & Qi, C. Imaging the molecular disk orbiting the twin young suns of V4046 Sgr. Astrophys. J. 720, 1684–1690 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Piétu, V., Gueth, F., Hily-Blant, P., Schuster, K.-F. & Pety, J. High resolution imaging of the GG Tauri system at 267 GHz. Astron. Astrophys. 528, A81 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Kennedy, G. M. et al. Coplanar circumbinary debris discs. Mon. Not. R. Astron. Soc. 426, 2115–2128 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Orosz, J. A. et al. Kepler-47: a transiting circumbinary multiplanet system. Science 337, 1511–1514 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kostov, V. B. et al. TOI-1338: TESS’ first transiting circumbinary planet. Astron. J. 159, 253 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Standing, M. R. et al. Radial-velocity discovery of a second planet in the TOI-1338/BEBOP-1 circumbinary system. Nat. Astron. 7, 702–714 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Gong, Y.-X. & Ji, J. Formation of S-type planets in close binaries: scattering-induced tidal capture of circumbinary planets. Mon. Not. R. Astron. Soc. 478, 4565–4574 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ortiz, M. et al. Precise radial velocities of giant stars. IX. HD 59686 Ab: a massive circumstellar planet orbiting a giant star in a ~13.6 au eccentric binary system. Astron. Astrophys. 595, A55 (2016).

    Article 

    Google Scholar
     

  • Trifonov, T., Lee, M. H., Reffert, S. & Quirrenbach, A. Dynamical analysis of the circumprimary planet in the eccentric binary system HD 59686. Astron. J. 155, 174 (2018).

    Article 
    ADS 

    Google Scholar
     

  • van Leeuwen, F. Hipparcos, the New Reduction of the Raw Data. Vol. 350 (Springer, 2007).

  • Gaia Collaboration et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

    Article 

    Google Scholar
     

  • Pecaut, M. J. & Mamajek, E. E. Intrinsic colors, temperatures, and bolometric corrections of pre-main-sequence stars. Astrophys. J. Suppl. 208, 9 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Cifuentes, C. et al. CARMENES input catalogue of M dwarfs. V. Luminosities, colours, and spectral energy distributions. Astron. Astrophys. 642, A115 (2020).

    Article 

    Google Scholar
     

  • Bédard, A., Bergeron, P., Brassard, P. & Fontaine, G. On the Spectral Evolution of Hot White Dwarf Stars. I. A Detailed Model Atmosphere Analysis of Hot White Dwarfs from SDSS DR12. Astrophys. J. 901, 93 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arenou, F. & Luri, X. Distances and absolute magnitudes from trigonometric parallaxes. ASP Conf. Ser. 167, 13–32 (1999).

    ADS 

    Google Scholar
     

  • Reffert, S. & Quirrenbach, A. Mass constraints on substellar companion candidates from the re-reduced Hipparcos intermediate astrometric data: nine confirmed planets and two confirmed brown dwarfs. Astron. Astrophys. 527, A140 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Christie, W. H. The provisional elements of 16 spectroscopic binaries. Astrophys. J. 83, 433–438 (1936).

    Article 
    ADS 

    Google Scholar
     

  • Zechmeister, M. et al. Spectrum radial velocity analyser (SERVAL). High-precision radial velocities and two alternative spectral indicators. Astron. Astrophys. 609, A12 (2018).

    Article 

    Google Scholar
     

  • Nelder, J. A. & Mead, R. A simplex method for function minimization. Comp. J. 7, 308–313 (1965).

    Article 
    MathSciNet 

    Google Scholar
     

  • Trifonov, T. The Exo-Striker: Transit and Radial Velocity Interactive Fitting Tool for Orbital Analysis and N-body Simulations. Astrophysics Source Code Library, record ascl:1906.1004 (2019).

  • Foreman-Mackey, D., Agol, E., Ambikasaran, S. & Angus, R. Fast and scalable Gaussian process modeling with applications to astronomical time series. Astron. J. 154, 220 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    Article 
    MathSciNet 

    Google Scholar
     

  • Trotta, R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 49, 71–104 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Trifonov, T. et al. A new third planet and the dynamical architecture of the HD 33142 planetary system. Astron. J. 164, 156 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, M. H. & Peale, S. J. Secular evolution of hierarchical planetary systems. Astrophys. J. 592, 1201–1216 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Reimers, D. in Circumstellar Envelopes and Mass Loss of Red Giant Stars (eds Baschek, B. et al.) 229–256 (Springer, 1975).

  • Siess, L., Davis, P. J. & Jorissen, A. The formation of long-period eccentric binaries with a helium white dwarf. Astron. Astrophys. 565, A57 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Duquennoy, A. & Mayor, M. Multiplicity among solar type stars in the solar neighbourhood – part two – distribution of the orbital elements in an unbiased sample. Astron. Astrophys. 248, 485 (1991).

    ADS 

    Google Scholar
     

  • Raghavan, D. et al. A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. Suppl. Ser. 190, 1–42 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Moe, M. & Di Stefano, R. Mind your Ps and Qs: the interrelation between period (P) and mass-ratio (Q) distributions of binary stars. Astrophys. J. Suppl. Ser. 230, 15 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Gladman, B. Dynamics of systems of two close planets. Icarus 106, 247–263 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Tremaine, S. Dynamics of Planetary System (Princeton Univ. Press, 2023).

  • Delorme, P. et al. The SPHERE data center: a reference for high contrast imaging processing. In Proc. Annual meeting of the SF2A, 347–361 (2017).

  • Soulain, A. et al. The James Webb Space Telescope aperture masking interferometer. In Proc. SPIE Vol. 11446 (2020).

  • Gallenne, A. et al. Robust high-contrast companion detection from interferometric observations. The CANDID algorithm and an application to six binary Cepheids. Astron. Astrophys. 579, A68 (2015).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments