Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 31, 473–521 (1993).
Netzer, H. Revisiting the unified model of active galactic nuclei. Annu. Rev. Astron. Astrophys. 53, 365–408 (2015).
Wu, X.-B. et al. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature 518, 512–515 (2015).
Wolf, C. et al. The accretion of a solar mass per day by a 17-billion solar mass black hole. Nat. Astron. 8, 520–529 (2024).
Volonteri, M., Haardt, F. & Madau, P. The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation. Astrophys. J. 582, 559–573 (2003).
Hopkins, P. F., Hernquist, L., Cox, T. J. & Kereš, D. A cosmological framework for the co-evolution of quasars, supermassive black holes, and elliptical galaxies. I. Galaxy mergers and quasar activity. Astrophys. J. Suppl. Ser. 175, 356–389 (2008).
Ellison, S. L., Patton, D. R., Mendel, J. T. & Scudder, J. M. Galaxy pairs in the Sloan Digital Sky Survey. IV. Interactions trigger active galactic nuclei. Mon. Not. R. Astron. Soc. 418, 2043–2053 (2011).
Trakhtenbrot, B. et al. ALMA observations show major mergers among the host galaxies of fast-growing, high-redshift supermassive black holes. Astrophys. J. 836, 8 (2017).
Decarli, R. et al. Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6. Nature 545, 457–461 (2017).
Goulding, A. D. et al. Galaxy interactions trigger rapid black hole growth: an unprecedented view from the Hyper Suprime-Cam survey. Publ. Astron. Soc. Jpn 70, S37 (2018).
Fogasy, J., Knudsen, K. K., Drouart, G., Lagos, C. D. P. & Fan, L. SMM J04135+10277: a distant QSO-starburst system caught by ALMA. Mon. Not. R. Astron. Soc. 493, 3744–3756 (2020).
Hopkins, P. F. & Elvis, M. Quasar feedback: more bang for your buck. Mon. Not. R. Astron. Soc. 401, 7–14 (2010).
Dubois, Y. et al. The HORIZON-AGN simulation: morphological diversity of galaxies promoted by AGN feedback. Mon. Not. R. Astron. Soc. 463, 3948–3964 (2016).
Pontzen, A. et al. How to quench a galaxy. Mon. Not. R. Astron. Soc. 465, 547–558 (2017).
Moiseev, A. V. & Smirnova, A. A. Ionizing spotlight of active galactic nucleus. Galaxies 11, 118 (2023).
Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).
Hirschmann, M., Somerville, R. S., Naab, T. & Burkert, A. Origin of the antihierarchical growth of black holes. Mon. Not. R. Astron. Soc. 426, 237–257 (2012).
Tang, S. et al. Morphological asymmetries of quasar host galaxies with Subaru Hyper Suprime-Cam. Mon. Not. R. Astron. Soc. 521, 5272–5297 (2023).
Noterdaeme, P. et al. Proximate molecular quasar absorbers. Excess of damped H2 systems at zabs ≈ zQSO in SDSS DR14. Astron. Astrophys. 627, A32 (2019).
Popesso, P. et al. The main sequence of star-forming galaxies across cosmic times. Mon. Not. R. Astron. Soc. 519, 1526–1544 (2023).
Rahmati, A. & Schaye, J. Predictions for the relation between strong Hi absorbers and galaxies at redshift 3. Mon. Not. R. Astron. Soc. 438, 529–547 (2014).
Noterdaeme, P. et al. A connection between extremely strong damped Lyman-α systems and Lyman-α emitting galaxies at small impact parameters. Astron. Astrophys. 566, A24 (2014).
Krogager, J. K., Møller, P., Fynbo, J. P. U. & Noterdaeme, P. Consensus report on 25 yr of searches for damped Ly α galaxies in emission: confirming their metallicity-luminosity relation at z ≳ 2. Mon. Not. R. Astron. Soc. 469, 2959–2981 (2017).
Krogager, J.-K. et al. High-redshift damped Ly α absorbing galaxy model reproducing the NH i – Z distribution. Mon. Not. R. Astron. Soc. 495, 3014–3021 (2020).
Di Matteo, T., Croft, R. A. C., Springel, V. & Hernquist, L. The cosmological evolution of metal enrichment in quasar host galaxies. Astrophys. J. 610, 80–92 (2004).
Ledoux, C., Petitjean, P., Fynbo, J. P. U., Møller, P. & Srianand, R. Velocity-metallicity correlation for high-z DLA galaxies: evidence of a mass-metallicity relation? Astron. Astrophys. 457, 71–78 (2006).
Balashev, S. A. et al. CO-dark molecular gas at high redshift: very large H2 content and high pressure in a low-metallicity damped Lyman alpha system. Mon. Not. R. Astron. Soc. 470, 2890–2910 (2017).
Ranjan, A. et al. Molecular gas and star formation in an absorption-selected galaxy: hitting the bull’s eye at z ≃ 2.46. Astron. Astrophys. 618, A184 (2018).
Balashev, S. A. et al. X-shooter observations of strong H2-bearing DLAs at high redshift. Mon. Not. R. Astron. Soc. 490, 2668–2678 (2019).
Shull, J. M., Danforth, C. W. & Anderson, K. L. A far ultraviolet spectroscopic explorer survey of interstellar molecular hydrogen in the Galactic disk. Astrophys. J. 911, 55 (2021).
Boissé, P. et al. A far UV study of interstellar gas towards HD 34078: high excitation H2 and small scale structure. Astron. Astrophys. 429, 509–523 (2005).
Urrutia, T., Lacy, M. & Becker, R. H. Evidence for quasar activity triggered by galaxy mergers in HST observations of dust-reddened quasars. Astrophys. J. 674, 80–96 (2008).
Glikman, E. et al. Major mergers host the most-luminous red quasars at z ~ 2: a Hubble Space Telescope WFC3/IR study. Astrophys. J. 806, 218 (2015).
Hennebelle, P. & Falgarone, E. Turbulent molecular clouds. Astron. Astrophys. Rev. 20, 55 (2012).
McCourt, M., Oh, S. P., O’Leary, R. & Madigan, A.-M. A characteristic scale for cold gas. Mon. Not. R. Astron. Soc. 473, 5407–5431 (2018).
Arav, N., Barlow, T. A., Laor, A. & Blandford, R. D. Keck high-resolution spectroscopy of MRK 335: constraints on the number of emitting clouds in the broad-line region. Mon. Not. R. Astron. Soc. 288, 1015–1021 (1997).
Balashev, S. A. & Noterdaeme, P. Molecular hydrogen in absorption at high redshifts. Exp. Astron. 55, 223–239 (2023).
Kosenko, D. N., Balashev, S. A. & Klimenko, V. V. Cold diffuse interstellar medium of Magellanic Clouds. II. Physical conditions from excitation of C i and H2. Mon. Not. R. Astron. Soc. 528, 5065–5079 (2024).
Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983).
Noterdaeme, P. et al. Proximate molecular quasar absorbers. Chemical enrichment and kinematics of the neutral gas. Astron. Astrophys. 673, A89 (2023).
Hunter, T. R. et al. The ALMA interferometric pipeline heuristics. Publ. Astron. Soc. Pac. 135, 074501 (2023).
Tanaka, M. et al. Hyper Suprime-Cam legacy archive. Publ. Astron. Soc. Jpn 73, 735–746 (2021).
Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).
Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).
Serra, P. et al. SOFIA: a flexible source finder for 3D spectral line data. Mon. Not. R. Astron. Soc. 448, 1922–1929 (2015).
Westmeier, T. et al. SOFIA 2 – an automated, parallel H i source finding pipeline for the WALLABY survey. Mon. Not. R. Astron. Soc. 506, 3962–3976 (2021).
Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with Bagpipes: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).
Carnall, A. C. et al. How to measure galaxy star formation histories. I. Parametric models. Astrophys. J. 873, 44 (2019).
Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).
Draine, B. T. & Li, A. Infrared emission from interstellar dust. IV. The silicate-graphite-PAH model in the post-Spitzer era. Astrophys. J. 657, 810–837 (2007).
Solomon, P. M. & Vanden Bout, P. A. Molecular gas at high redshift. Annu. Rev. Astron. Astrophys. 43, 677–725 (2005).
Boogaard, L. A. et al. The ALMA spectroscopic survey in the Hubble ultra deep field: CO excitation and atomic carbon in star-forming galaxies at z = 1–3. Astrophys. J. 902, 109 (2020).
Carilli, C. L. & Walter, F. Cool gas in high-redshift galaxies. Annu. Rev. Astron. Astrophys. 51, 105–161 (2013).
Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 51, 207–268 (2013).
Sargent, M. T. et al. Regularity underlying complexity: a redshift-independent description of the continuous variation of galaxy-scale molecular gas properties in the mass-star formation rate plane. Astrophys. J. 793, 19 (2014).
Calistro Rivera, G. et al. Resolving the ISM at the peak of cosmic star formation with ALMA: the distribution of CO and dust continuum in z ~ 2.5 submillimeter galaxies. Astrophys. J. 863, 56 (2018).
Vestergaard, M. & Peterson, B. M. Determining central black hole masses in distant active galaxies and quasars. II. Improved optical and UV scaling relationships. Astrophys. J. 641, 689–709 (2006).
Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).
Zahid, H. J., Geller, M. J., Fabricant, D. G. & Hwang, H. S. The scaling of stellar mass and central stellar velocity dispersion for quiescent galaxies at z < 0.7. Astrophys. J. 832, 203 (2016).
Runnoe, J. C., Brotherton, M. S. & Shang, Z. Updating quasar bolometric luminosity corrections. Mon. Not. R. Astron. Soc. 422, 478–493 (2012).
Selsing, J., Fynbo, J. P. U., Christensen, L. & Krogager, J. K. An X-shooter composite of bright 1 < z < 2 quasars from UV to infrared. Astron. Astrophys. 585, A87 (2016).
Wang, J., Hall, P. B., Ge, J., Li, A. & Schneider, D. P. Detections of the 2175 Å dust feature at 1.4 < z < 1.5 from the Sloan Digital Sky Survey. Astrophys. J. 609, 589–596 (2004).
Srianand, R., Gupta, N., Petitjean, P., Noterdaeme, P. & Saikia, D. J. Detection of the 2175 Å extinction feature and 21-cm absorption in two Mg ii systems at z ~ 1.3. Mon. Not. R. Astron. Soc. 391, L69–L73 (2008).
Zhang, S. et al. Seven broad absorption line quasars with excess broadband absorption near 2250 Å. Astrophys. J. 802, 92 (2015).
Noterdaeme, P. et al. Discovery of a Perseus-like cloud in the early Universe. H i-to-H2 transition, carbon monoxide and small dust grains at zabs ≈ 2.53 towards the quasar J0000+0048. Astron. Astrophys. 597, A82 (2017).
Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U. & Wolff, M. J. A quantitative comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way ultraviolet to near-infrared extinction curves. Astrophys. J. 594, 279–293 (2003).
Hamann, F. et al. Extremely red quasars in BOSS. Mon. Not. R. Astron. Soc. 464, 3431–3463 (2017).
Veilleux, S. et al. The surprising absence of absorption in the far-ultraviolet spectrum of Mrk 231. Astrophys. J. 764, 15 (2013).
Bergeron, J. & Boissé, P. Extent and structure of intervening absorbers from absorption lines redshifted on quasar emission lines. Astron. Astrophys. 604, A37 (2017).
Lacour, S. et al. Velocity dispersion of the high rotational levels of H2. Astrophys. J. 627, 251–262 (2005).
Noterdaeme, P. et al. Excitation mechanisms in newly discovered H2-bearing damped Lyman-α clouds: systems with low molecular fractions. Astron. Astrophys. 474, 393–407 (2007).
Balashev, S. A., Varshalovich, D. A. & Ivanchik, A. V. Directional radiation and photodissociation regions in molecular hydrogen clouds. Astron. Lett. 35, 150–166 (2009).
Noterdaeme, P. et al. Down-the-barrel observations of a multi-phase quasar outflow at high redshift. VLT/X-shooter spectroscopy of the proximate molecular absorber at z = 2.631 towards SDSS J001514+184212. Astron. Astrophys. 646, A108 (2021).
Kosenko, D. N. et al. HD molecules at high redshift: cosmic ray ionization rate in the diffuse interstellar medium. Mon. Not. R. Astron. Soc. 505, 3810–3822 (2021).
Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).
Noterdaeme, P. et al. Spotting high-z molecular absorbers using neutral carbon. Results from a complete spectroscopic survey with the VLT. Astron. Astrophys. 612, A58 (2018).
Balashev, S. A. & Kosenko, D. N. Neutral carbon in diffuse interstellar medium: abundance matching with H2 for damped Lyman alpha systems at high redshifts. Mon. Not. R. Astron. Soc. 527, 12109–12119 (2024).
Schroder, K., Staemmler, V., Smith, M. D., Flower, D. R. & Jaquet, R. Excitation of the fine-structure transitions of C in collisions with ortho- and para-H2. J. Phys. B: At. Mol. Phys. 24, 2487–2502 (1991).
Abrahamsson, E., Krems, R. V. & Dalgarno, A. Fine-structure excitation of O i and C i by impact with atomic hydrogen. Astrophys. J. 654, 1171–1174 (2007).
Staemmler, V. & Flower, D. R. Excitation of the C(2p2. 3Pj) fine structure states in collisions with He(1s2 1S0). J. Phys. B: At. Mol. Phys. 24, 2343–2351 (1991).
Le Petit, F., Nehmé, C., Le Bourlot, J. & Roueff, E. A model for atomic and molecular interstellar gas: the Meudon PDR code. Astrophys. J. Suppl. Ser. 164, 506–529 (2006).
Klimenko, V. V. & Balashev, S. A. Physical conditions in the diffuse interstellar medium of local and high-redshift galaxies: measurements based on the excitation of H2 rotational and C i fine-structure levels. Mon. Not. R. Astron. Soc. 498, 1531–1549 (2020).
Sternberg, A., Le Petit, F., Roueff, E. & Le Bourlot, J. H i-to-H2 transitions and H i column densities in galaxy star-forming regions. Astrophys. J. 790, 10 (2014).
Bialy, S. & Sternberg, A. Analytic H i-to-H2 photodissociation transition profiles. Astrophys. J. 822, 83 (2016).
Astropy Collaboration. et al. The Astropy Project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935, 167 (2022).
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
Bradley, L. et al. astropy/photutils: 1.12.0. Zenodo https://doi.org/10.5281/zenodo.10967176 (2024).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).