Li, C. et al. The dependence of clustering on galaxy properties. Mon. Not. R. Astron. Soc. 368, 21–36 (2006).
Zehavi, I. et al. Galaxy clustering in the completed SDSS redshift survey: the dependence on color and luminosity. Astrophys. J. 736, 59 (2011).
Gao, L., Springel, V. & White, S. D. M. The age dependence of halo clustering. Mon. Not. R. Astron. Soc. 363, L66–L70 (2005).
Amorisco, N. C. & Loeb, A. Ultradiffuse galaxies: the high-spin tail of the abundant dwarf galaxy population. Mon. Not. R. Astron. Soc. 459, L51–L55 (2016).
Di Cintio, A. et al. NIHAO—XI. Formation of ultra-diffuse galaxies by outflows. Mon. Not. R. Astron. Soc. 466, L1–L6 (2017).
van Dokkum, P. et al. A trail of dark-matter-free galaxies from a bullet-dwarf collision. Nature 605, 435–439 (2022).
Spergel, D. N. & Steinhardt, P. J. Observational evidence for self-interacting cold dark matter. Phys. Rev. Lett. 84, 3760–3763 (2000).
Blanton, M. R. et al. New York University Value-Added Galaxy Catalog: a galaxy catalog based on new public surveys. Astron. J. 129, 2562–2578 (2005).
Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 182, 543–558 (2009).
Yang, X. et al. Galaxy groups in the SDSS DR4. I. The catalog and basic properties. Astrophys. J. 671, 153–170 (2007).
van Dokkum, P. G. et al. Forty-seven Milky Way-sized, extremely diffuse galaxies in the Coma Cluster. Astrophys. J. 798, L45 (2015).
Mo, H. J. & White, S. D. M. An analytic model for the spatial clustering of dark matter haloes. Mon. Not. R. Astron. Soc. 282, 347–361 (1996).
Hu, H.-J. et al. Global dynamic scaling relations of H i-rich ultra-diffuse galaxies. Astrophys. J. Lett. 947, L9 (2023).
Kravtsov, A. V., Vikhlinin, A. A. & Meshcheryakov, A. V. Stellar mass–halo mass relation and star formation efficiency in high-mass halos. Astron. Lett. 44, 8–34 (2018).
Tinker, J. L. et al. The large-scale bias of dark matter halos: numerical calibration and model tests. Astrophys. J. 724, 878–886 (2010).
Wang, E. et al. The dearth of differences between central and satellite galaxies. II. Comparison of observations with L-GALAXIES and EAGLE in star formation quenching. Astrophys. J. 864, 51 (2018).
Wang, H. et al. ELUCID—exploring the local Universe with reconstructed initial density field. III. Constrained simulation in the SDSS volume. Astrophys. J. 831, 164 (2016).
Wechsler, R. H., Zentner, A. R., Bullock, J. S., Kravtsov, A. V. & Allgood, B. The dependence of halo clustering on halo formation history, concentration, and occupation. Astrophys. J. 652, 71–84 (2006).
Jing, Y. P., Suto, Y. & Mo, H. J. The dependence of dark halo clustering on formation epoch and concentration parameter. Astrophys. J. 657, 664–668 (2007).
Bett, P. et al. The spin and shape of dark matter haloes in the Millennium simulation of a Λ cold dark matter universe. Mon. Not. R. Astron. Soc. 376, 215–232 (2007).
Gao, L., White, S. D. M., Jenkins, A., Stoehr, F. & Springel, V. The subhalo populations of ΛCDM dark haloes. Mon. Not. R. Astron. Soc. 355, 819–834 (2004).
Sato-Polito, G., Montero-Dorta, A. D., Abramo, L. R., Prada, F. & Klypin, A. The dependence of halo bias on age, concentration, and spin. Mon. Not. R. Astron. Soc. 487, 1570–1579 (2019).
Wang, H., Mo, H. J. & Jing, Y. P. The distribution of ejected subhaloes and its implication for halo assembly bias. Mon. Not. R. Astron. Soc. 396, 2249–2256 (2009).
Wang, H., Mo, H. J., Yang, X., Jing, Y. P. & Lin, W. P. ELUCID—exploring the local Universe with the reconstructed initial density field. I. Hamiltonian Markov chain Monte Carlo method with particle mesh dynamics. Astrophys. J. 794, 94 (2014).
van Dokkum, P. et al. A high stellar velocity dispersion and ~100 globular clusters for the ultra-diffuse galaxy Dragonfly 44. Astrophys. J. Lett. 828, L6 (2016).
Safarzadeh, M. & Scannapieco, E. The fate of gas-rich satellites in clusters. Astrophys. J. 850, 99 (2017).
Jiang, F. et al. Formation of ultra-diffuse galaxies in the field and in galaxy groups. Mon. Not. R. Astron. Soc. 487, 5272–5290 (2019).
Liao, S. et al. Ultra-diffuse galaxies in the Auriga simulations. Mon. Not. R. Astron. Soc. 490, 5182–5195 (2019).
Benítez-Llambay, A. et al. Dwarf galaxies and the cosmic web. Astrophys. J. 763, L41 (2013).
Rong, Y. et al. A Universe of ultradiffuse galaxies: theoretical predictions from ΛCDM simulations. Mon. Not. R. Astron. Soc. 470, 4231–4240 (2017).
Benavides, J. A. et al. Origin and evolution of ultradiffuse galaxies in different environments. Mon. Not. R. Astron. Soc. 522, 1033–1048 (2023).
Mo, H. J., Mao, S. & White, S. D. M. The formation of galactic discs. Mon. Not. R. Astron. Soc. 295, 319–336 (1998).
Chan, T. K. et al. The origin of ultra diffuse galaxies: stellar feedback and quenching. Mon. Not. R. Astron. Soc. 478, 906–925 (2018).
Guo, Q. et al. From dwarf spheroidals to cD galaxies: simulating the galaxy population in a ΛCDM cosmology. Mon. Not. R. Astron. Soc. 413, 101–131 (2011).
Ayromlou, M. et al. Comparing galaxy formation in the L-GALAXIES semi-analytical model and the IllustrisTNG simulations. Mon. Not. R. Astron. Soc. 502, 1051–1069 (2021).
Pillepich, A. et al. First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. Mon. Not. R. Astron. Soc. 475, 648–675 (2018).
Bullock, J. S. & Boylan-Kolchin, M. Small-scale challenges to the ΛCDM paradigm. Annu. Rev. Astron. Astrophys. 55, 343–387 (2017).
Tulin, S. & Yu, H.-B. Dark matter self-interactions and small scale structure. Phys. Rep. 730, 1–57 (2018).
Kaplinghat, M., Ren, T. & Yu, H.-B. Dark matter cores and cusps in spiral galaxies and their explanations. J. Cosmol. Astropart. Phys. 2020, 027 (2020).
Yang, D., Yu, H.-B. & An, H. Self-interacting dark matter and the origin of ultradiffuse galaxies NGC1052-DF2 and -DF4. Phys. Rev. Lett. 125, 111105 (2020).
Zhang, X., Yu, H.-B., Yang, D. & An, H. Self-interacting dark matter interpretation of Crater II. Astrophys. J. 968, L13 (2024).
Rocha, M. et al. Cosmological simulations with self-interacting dark matter—I. Constant-density cores and substructure. Mon. Not. R. Astron. Soc. 430, 81–104 (2013).
Jiang, F. et al. A semi-analytic study of self-interacting dark-matter haloes with baryons. Mon. Not. R. Astron. Soc. 521, 4630–4644 (2023).
Kong, D., Kaplinghat, M., Yu, H.-B., Fraternali, F. & Mancera Piña, P. E. The odd dark matter halos of isolated gas-rich ultradiffuse galaxies. Astrophys. J. 936, 166 (2022).
Mancera Piña, P. E., Golini, G., Trujillo, I. & Montes, M. Exploring the nature of dark matter with the extreme galaxy AGC 114905. Astron. Astrophys. 689, A344 (2024).
Burkert, A. The structure of dark matter halos in dwarf galaxies. Astrophys. J. 447, L25–L28 (1995).
Huang, K.-H. et al. Relations between the sizes of galaxies and their dark matter halos at redshifts 0 < z < 3. Astrophys. J. 838, 6 (2017).
Chen, Y., Mo, H. & Wang, H. A two-phase model of galaxy formation—II. The size–mass relation of dynamically hot galaxies. Mon. Not. R. Astron. Soc. 532, 4340–4349 (2024).
Shi, Y. et al. A cuspy dark matter halo. Astrophys. J. 909, 20 (2021).
Correa, C. A. et al. TangoSIDM Project: is the stellar mass Tully–Fisher relation consistent with SIDM?. Mon. Not. R. Astron. Soc. 536, 3338–3356 (2025).
Yang, X., Mo, H. J., van den Bosch, F. C. & Jing, Y. P. A halo-based galaxy group finder: calibration and application to the 2dFGRS. Mon. Not. R. Astron. Soc. 356, 1293–1307 (2005).
Kauffmann, G. et al. The host galaxies of active galactic nuclei. Mon. Not. R. Astron. Soc. 346, 1055–1077 (2003).
Koda, J., Yagi, M., Yamanoi, H. & Komiyama, Y. Approximately a thousand ultra-diffuse galaxies in the Coma Cluster. Astrophys. J. Lett. 807, L2 (2015).
Davis, M. & Peebles, P. J. E. A survey of galaxy redshifts. V. The two-point position and velocity correlations. Astrophys. J. 267, 465–482 (1983).
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).
Zhang, Z. et al. Hosts and triggers of AGNs in the local Universe. Astron. Astrophys. 650, A155 (2021).
Trusov, S. et al. The two-point correlation function covariance with fewer mocks. Mon. Not. R. Astron. Soc. 527, 9048–9060 (2023).
Strauss, M. A. et al. Spectroscopic target selection in the Sloan Digital Sky Survey: the main galaxy sample. Astron. J. 124, 1810–1824 (2002).
Moster, B. P., Somerville, R. S., Newman, J. A. & Rix, H.-W. A cosmic variance cookbook. Astrophys. J. 731, 113 (2011).
Chen, Y. et al. ELUCID. VI. Cosmic variance of the galaxy distribution in the local Universe. Astrophys. J. 872, 180 (2019).
Wechsler, R. H. & Tinker, J. L. The connection between galaxies and their dark matter halos. Annu. Rev. Astron. Astrophys. 56, 435–487 (2018).
Giovanelli, R. et al. The Arecibo Legacy Fast ALFA Survey. I. Science goals, survey design, and strategy. Astron. J. 130, 2598–2612 (2005).
Haynes, M. P. et al. The Arecibo Legacy Fast ALFA survey: the ALFALFA extragalactic H i source catalog. Astrophys. J. 861, 49 (2018).
Guo, Q. et al. Further evidence for a population of dark-matter-deficient dwarf galaxies. Nat. Astron. 4, 246–251 (2020).
Marchesini, D. et al. Hα rotation curves: the soft core question. Astrophys. J. 575, 801–813 (2002).
Rong, Y. et al. Gas-rich ultra-diffuse galaxies are originated from high specific angular momentum. Preprint at https://arxiv.org/abs/2404.00555 (2024).
Wang, J. et al. Universal structure of dark matter haloes over a mass range of 20 orders of magnitude. Nature 585, 39–42 (2020).
Starkenburg, T. K. et al. On the origin of star-gas counterrotation in low-mass galaxies. Astrophys. J. 878, 143 (2019).
Gault, L. et al. VLA imaging of H i-bearing ultra-diffuse galaxies from the ALFALFA survey. Astrophys. J. 909, 19 (2021).
Hahn, O., Porciani, C., Carollo, C. M. & Dekel, A. Properties of dark matter haloes in clusters, filaments, sheets and voids. Mon. Not. R. Astron. Soc. 375, 489–499 (2007).
Nelson, D. et al. The IllustrisTNG simulations: public data release. Comput. Astrophys. Cosmol. 6, 2 (2019).
Li, Y., Mo, H. J. & Gao, L. On halo formation times and assembly bias. Mon. Not. R. Astron. Soc. 389, 1419–1426 (2008).
Bullock, J. S. et al. A universal angular momentum profile for galactic halos. Astrophys. J. 555, 240 (2001).
Hearin, A. P. & Watson, D. F. The dark side of galaxy colour. Mon. Not. R. Astron. Soc. 435, 1313–1324 (2013).
Behroozi, P., Wechsler, R. H., Hearin, A. P. & Conroy, C. UniverseMachine: the correlation between galaxy growth and dark matter halo assembly from z = 0–10. Mon. Not. R. Astron. Soc. 488, 3143–3194 (2019).
Silk, J. Ultra-diffuse galaxies without dark matter. Mon. Not. R. Astron. Soc. 488, L24–L28 (2019).
Yozin, C. & Bekki, K. The quenching and survival of ultra diffuse galaxies in the Coma Cluster. Mon. Not. R. Astron. Soc. 452, 937–943 (2015).
Chen, Y. et al. Relating the structure of dark matter halos to their assembly and environment. Astrophys. J. 899, 81 (2020).
Relatores, N. C. et al. The dark matter distributions in low-mass disk galaxies. II. The inner density profiles. Astrophys. J. 887, 94 (2019).
Springel, V. et al. First results from the IllustrisTNG simulations: matter and galaxy clustering. Mon. Not. R. Astron. Soc. 475, 676–698 (2018).
Nelson, D. et al. First results from the IllustrisTNG simulations: the galaxy colour bimodality. Mon. Not. R. Astron. Soc. 475, 624–647 (2018).
Naiman, J. P. et al. First results from the IllustrisTNG simulations: a tale of two elements—chemical evolution of magnesium and europium. Mon. Not. R. Astron. Soc. 477, 1206–1224 (2018).
Marinacci, F. et al. First results from the IllustrisTNG simulations: radio haloes and magnetic fields. Mon. Not. R. Astron. Soc. 480, 5113–5139 (2018).
Weinberger, R. et al. Simulating galaxy formation with black hole driven thermal and kinetic feedback. Mon. Not. R. Astron. Soc. 465, 3291–3308 (2017).
Pillepich, A. et al. Simulating galaxy formation with the IllustrisTNG model. Mon. Not. R. Astron. Soc. 473, 4077–4106 (2018).
Henriques, B. M. B. et al. Galaxy formation in the Planck cosmology—I. Matching the observed evolution of star formation rates, colours and stellar masses. Mon. Not. R. Astron. Soc. 451, 2663–2680 (2015).
Pillepich, A. et al. First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time. Mon. Not. R. Astron. Soc. 490, 3196–3233 (2019).
Nelson, D. et al. First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback. Mon. Not. R. Astron. Soc. 490, 3234–3261 (2019).
Kaplinghat, M., Tulin, S. & Yu, H.-B. Dark matter halos as particle colliders: unified solution to small-scale structure puzzles from dwarfs to clusters. Phys. Rev. Lett. 116, 041302 (2016).
Mo, H. J. & Mao, S. The Tully–Fisher relation and its implications for the halo density profile and self-interacting dark matter. Mon. Not. R. Astron. Soc. 318, 163–172 (2000).
Fischer, M. S. et al. Cosmological and idealized simulations of dark matter haloes with velocity-dependent, rare and frequent self-interactions. Mon. Not. R. Astron. Soc. 529, 2327–2348 (2024).