Mundl-Petermeier, A. et al. Anomalous 182W in high 3He/4He ocean island basalts: fingerprints of Earth’s core? Geochim. Cosmochim. Acta 271, 194–211 (2020).
Rizo, H. et al. 182W evidence for core-mantle interaction in the source of mantle plumes. Geochem. Perspect. Lett. 11, 6–11 (2019).
Horton, F. et al. Highest terrestrial 3He/4He credibly from the core. Nature 623, 90–94 (2023).
Walker, R. J., Morgan, J. W. & Horan, M. F. Osmium-187 enrichment in some plumes: evidence for core-mantle interaction? Science 269, 819–822 (1995).
Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).
Fischer-Gödde, M. et al. Ruthenium isotope vestige of Earth’s pre-late-veneer mantle preserved in Archaean rocks. Nature 579, 240–244 (2020).
Vockenhuber, C. et al. New half-life measurement of 182Hf: improved chronometer for the early solar system. Phys. Rev. Lett. 93, 172501 (2004).
Archer, G. J. et al. Origin of W anomalies in ocean island basalts. Geochem. Geophys. Geosyst. 24, e2022GC010688 (2023).
Bouhifd, M. A., Jephcoat, A. P., Heber, V. S. & Kelley, S. P. Helium in Earth’s early core. Nat. Geosci. 6, 982–986 (2013).
Ferrick, A. L. & Korenaga, J. Long-term core–mantle interaction explains W-He isotope heterogeneities. Proc. Natl Acad. Sci. USA 120, e2215903120 (2023).
Korenaga, J. & Marchi, S. Vestiges of impact-driven three-phase mixing in the chemistry and structure of Earth’s mantle. Proc. Natl Acad. Sci. USA 120, e2309181120 (2023).
Willhite, L. N., Finlayson, V. A. & Walker, R. J. Evolution of tungsten isotope systematics in the Mauna Kea volcano provides new constraints on anomalous µ182W and high 3He/4He in the mantle. Earth Planet. Sci. Lett. 640, 118795 (2024).
Tusch, J. et al. Long-term preservation of Hadean protocrust in Earth’s mantle. Proc. Natl Acad. Sci. USA 119, e2120241119 (2022).
Ireland, T. J., Walker, R. J. & Brandon, A. D. 186Os-187Os systematics of Hawaiian picrites revisited: new insights into Os isotopic variations in ocean island basalts. Geochim. Cosmochim. Acta 75, 4456–4475 (2011).
Bennett, V. C., Norman, M. D. & Garcia, M. O. Rhenium and platinum group element abundances correlated with mantle source components in Hawaiian picrites: sulphides in the plume. Earth Planet. Sci. Lett. 183, 513–526 (2000).
Yoshino, T., Makino, Y., Suzuki, T. & Hirata, T. Grain boundary diffusion of W in lower mantle phase with implications for isotopic heterogeneity in oceanic island basalts by core-mantle interactions. Earth Planet. Sci. Lett. 530, 115887 (2020).
Kaare-Rasmussen, J. et al. Tungsten isotopes in Baffin Island lavas: evidence of Iceland plume evolution. Geochem. Perspect. Lett. 28, 7–12 (2023).
Walker, R. J. et al. 182W and 187Os constraints on the origin of siderophile isotopic heterogeneity in the mantle. Geochim. Cosmochim. Acta 363, 15–39 (2023).
Rubie, D. C. et al. Highly siderophile elements were stripped from Earth’s mantle by iron sulfide segregation. Science 353, 1141–1144 (2016).
Chou, C. L. Fractionation of siderophile elements in the Earth’s upper mantle. In Proc. 9th Lunar and Planetary Science Conference 219–230 (Pergamon Press, 1978).
Starkey, N. A. et al. Helium isotopes in early Iceland plume picrites: constraints on the composition of high 3He/4He mantle. Earth Planet. Sci. Lett. 277, 91–100 (2009).
Stubbs, D. The Tungsten Isotopic Evolution of the Silicate Earth 143–217. PhD thesis, Univ. of Bristol (2021).
Bermingham, K. R. & Walker, R. J. The ruthenium isotopic composition of the oceanic mantle. Earth Planet. Sci. Lett. 474, 466–473 (2017).
Dauphas, N., Hopp, T. & Nesvorný, D. Bayesian inference on the isotopic building blocks of Mars and Earth. Icarus 408, 115805 (2024).
Render, J., Brennecka, G. A., Burkhardt, C. & Kleine, T. Solar System evolution and terrestrial planet accretion determined by Zr isotopic signatures of meteorites. Earth Planet. Sci. Lett. 595, 117748 (2022).
Budde, G., Burkhardt, C. & Kleine, T. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nat. Astron. 3, 736–741 (2019).
Fischer-Gödde, M. & Kleine, T. Ruthenium isotopic evidence for an inner Solar System origin of the late veneer. Nature 541, 525–527 (2017).
Touboul, M., Puchtel, I. S. & Walker, R. J. 182W Evidence for long-term preservation of early mantle differentiation products. Science 355, 1065–1069 (2012).
McDonough, W. F. in Treatise on Geochemistry Vol. 2 (eds Holland H. D. & Turekian, K. K.) 547–568 (Elsevier, 2003).
Waters, C. L. et al. Sulfide mantle source heterogeneity recorded in basaltic lavas from the Azores. Geochim. Cosmochim. Acta 268, 422–445 (2020).
Day, J. M. D. Hotspot volcanism and highly siderophile elements. Chem. Geol. 341, 50–74 (2013).
Mungall, J. & Brenan, J. Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. Geochim. Cosmochim. Acta 125, 265–289 (2014).
Badro, J., Siebert, J. & Nimmo, F. An early geodynamo driven by exsolution of mantle components from Earth’s core. Nature 536, 326–328 (2016).
Chabot, N. L., Wollack, E. A., Humayun, M. & Shank, E. M. The effect of oxygen as a light element in metallic liquids on partitioning behavior. Meteorit. Planet. Sci. 50, 530–546 (2015).
Mann, U., Frost, D. J., Rubie, D. C., Becker, H. & Audétat, A. Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures—implications for the origin of highly siderophile element concentrations in the Earth’s mantle. Geochim. Cosmochim. Acta 84, 593–613 (2012).
Suer, T. A. et al. Reconciling metal–silicate partitioning and late accretion in the Earth. Nat. Commun. 12, 2913 (2021).
Puchtel, I. S., Blichert-Toft, J., Touboul, M., Horan, M. F. & Walker, R. J. The coupled 182W-142Nd record of early terrestrial mantle differentiation. Geochem. Geophys. Geosyst. 17, 2168–2193 (2016).
de Leeuw, G. A. M., Ellam, R. M., Stuart, F. M. & Carlson, R. W. 142Nd/144Nd inferences on the nature and origin of the source of high 3He/4He magmas. Earth Planet. Sci. Lett. 472, 62–68 (2017).
Horan, M. F. et al. Tracking Hadean processes in modern basalts with 142-Neodymium. Earth Planet. Sci. Lett. 484, 184–191 (2018).
Jackson, M. G. & Carlson, R. W. Homogeneous superchondritic 142Nd/144Nd in the mid-ocean ridge basalt and ocean island basalt mantle. Geochem. Geophys. Geosyst. 13, Q06011 (2012).
Chen, K. et al. Platinum-group element abundances and Re–Os isotopic systematics of the upper continental crust through time: evidence from glacial diamictites. Geochim. Cosmochim. Acta 191, 1–16 (2016).
Becker, H. et al. Highly siderophile element composition of the Earth’s primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim. Cosmochim. Acta 70, 4528–4550 (2006).
Hopp, T., Budde, G. & Kleine, T. Heterogeneous accretion of Earth inferred from Mo-Ru isotope systematics. Earth Planet. Sci. Lett. 534, 116065 (2020).
Vermeesch, P. IsoplotR: a free and open toolbox for geochronology. Geosci. Front. 9, 1479–1493 (2018).
Jansen, M. W. et al. Upper mantle control on the W isotope record of shallow level plume and intraplate volcanic settings. Earth Planet. Sci. Lett. 585, 117507 (2022).
Helz, R. T. & Wright, T. L. Drilling Report and Core Logs of the 1981 Drilling of Kilauea Iki Lava Lake. Open-file report 83-326 (USGS, 1981).
Kurz, M. D., Jenkins, W. J. & Hart, S. R. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297, 43–47 (1982).
Kent, A. J. R. et al. Widespread assimilation of a seawater-derived component at Loihi seamount, Hawaii. Geochim. Cosmochim. Acta 63, 2749–2761 (1999).
Mukhopadhyay, S., Lassiter, J. C., Farley, K. A. & Bogue, S. W. Geochemistry of Kauai shield-stage lavas: implications for the chemical evolution of the Hawaiian plume. Geochem. Geophys. Geosyst. 4, 1009 (2003).
Cross, W. Lavas of Hawaii and their Relations. USGS professional paper 88 (USGS, 1915).
Roden, M. F., Trull, T., Hart, S. R. & Frey, F. A. New He, Nd, Pb, and Sr isotopic constraints on the constitution of the Hawaiian plume: results from Koolau Volcano, Oahu, Hawaii, USA. Geochim. Cosmochim. Acta 58, 1431–1440 (1994).
Appel, H., Wörner, G., Alvarado, G., Rundle, C. & Kussmaul, S. Age relations in igneous rocks from Costa Rica. Profil 7, 63–69 (1994).
Messling, N., Wörner, G. & Willbold, M. Ancient mantle plume components constrained by tungsten isotope variability in arc lavas. Geochem. Perspect. Lett. 26, 31–35 (2023).
Schmincke, H. U. & Sunkel, G. Carboniferous submarine volcanism at Herbornseelbach (Lahn-Dill area, Germany). Geol. Rundschau 76, 709–734 (1987).
Nutman, A. P., Bennett, V. C., Friend, C. R. L. & Yi, K. Eoarchean contrasting ultra-high-pressure to low-pressure metamorphisms (<250 to >1000 °C/GPa) explained by tectonic plate convergence in deep time. Precambrian Res. 344, 105770 (2020).
Waterton, P. et al. No mantle residues in the Isua Supracrustal Belt. Earth Planet. Sci. Lett. 579, 117348 (2022).
Zuo, J. et al. Earth’s earliest phaneritic ultramafic rocks: mantle slices or crustal cumulates? Geochem. Geophys. Geosyst. 23, e2022GC010519 (2022).
Fischer-Gödde, M., Burkhardt, C., Kruijer, T. S. & Kleine, T. Ru isotope heterogeneity in the solar protoplanetary disk. Geochim. Cosmochim. Acta 168, 151–171 (2015).
Hopp, T., Fischer-Gödde, M. & Kleine, T. Ruthenium isotope fractionation in protoplanetary cores. Geochim. Cosmochim. Acta 223, 75–89 (2018).
Avtokratova, T. D. in Analytical Chemistry of Ruthenium Ch. 4, 131–157 (1963).
Yoshida, N., Ono, T., Yoshida, R., Amano, Y. & Abe, H. Decomposition behavior of gaseous ruthenium tetroxide under atmospheric conditions assuming evaporation to dryness accident of high-level liquid waste. J. Nucl. Sci. Technol. 57, 1256–1264 (2020).
Koda, Y. Distillation of ruthenium tetraoxide with volatile acids. J. Inorg. Nucl. Chem. 25, 314–315 (1963).
Chen, J. H., Papanastassiou, D. A. & Wasserburg, G. J. Ruthenium endemic isotope effects in chondrites and differentiated meteorites. Geochim. Cosmochim. Acta 74, 3851–3862 (2010).
Tusch, J. et al. Uniform 182W isotope compositions in Eoarchean rocks from the Isua region, SW Greenland: the role of early silicate differentiation and missing late veneer. Geochim. Cosmochim. Acta 257, 284–310 (2019).
Budde, G., Archer, G. J., Tissot, F. L. H., Tappe, S. & Kleine, T. Origin of the analytical 183 W effect and its implications for tungsten isotope analyses. J. Anal. At. Spectrom. 37, 2005–2021 (2022).
Kruijer, T. S. & Kleine, T. No 182W excess in the Ontong Java Plateau source. Chem. Geol. 485, 24–31 (2018).
Peters, B. J., Mundl-Petermeier, A., Carlson, R. W., Walker, R. J. & Day, J. M. D. Combined lithophile-siderophile isotopic constraints on Hadean processes preserved in Ocean Island basalt sources. Geochem. Geophys. Geosyst. 22, e2020GC009479 (2021).
Savina, M. R. et al. Extinct technetium in silicon carbide stardust grains: implications for stellar nucleosynthesis. Science 303, 649–653 (2004).
Hopp, T., Fischer-Gödde, M. & Kleine, T. Ruthenium stable isotope measurements by double spike MC-ICPMS. J. Anal. At. Spectrom. 31, 1515–1526 (2016).
Fischer-Gödde, M., Becker, H. & Wombacher, F. Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths. Chem. Geol. 280, 365–383 (2011).
Palme, H. & O’Neill, H. S. Cosmochemical Estimates of Mantle Composition. Treatise on Geochemistry 2nd edn, Vol. 3 (eds Turekian, K. K. & Holland, H. D.) 1–39 (Elsevier, 2014).
Fischer-Gödde, M., Becker, H. & Wombacher, F. Rhodium, gold and other highly siderophile element abundances in chondritic meteorites. Geochim. Cosmochim. Acta 74, 356–379 (2010).
Horan, M. F., Walker, R. J., Morgan, J. W., Grossman, J. N. & Rubin, A. E. Highly siderophile elements in chondrites. Chem. Geol. 196, 27–42 (2003).