Friday, June 20, 2025
No menu items!
HomeNatureBulk–spatiotemporal vortex correspondence in gyromagnetic zero-index media

Bulk–spatiotemporal vortex correspondence in gyromagnetic zero-index media

  • Huang, X., Lai, Y., Hang, Z. H., Zheng, H. & Chan, C. T. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, V. C., Chen, L. & Halterman, K. Total transmission and total reflection by zero index metamaterials with defects. Phys. Rev. Lett. 105, 233908 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Moitra, P. et al. Realization of an all-dielectric zero-index optical metamaterial. Nat. Photon. 7, 791–795 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Y. et al. On-chip zero-index metamaterials. Nat. Photon. 9, 738–742 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cui, X., Ding, K., Dong, J.-W. & Chan, C. T. Realization of complex conjugate media using non-PT-symmetric photonic crystals. Nanophotonics 9, 195–203 (2019).

    Article 

    Google Scholar
     

  • Xu, C. et al. Three-dimensional electromagnetic void space. Phys. Rev. Lett. 127, 123902 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y., Chan, C. T. & Mazur, E. Dirac-like cone-based electromagnetic zero-index metamaterials. Light. Sci. Appl. 10, 203 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, A., Zhang, Z. Q., Louie, S. G. & Chan, C. T. Klein tunneling and supercollimation of pseudospin-1 electromagnetic waves. Phys. Rev. B 93, 035422 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Davoyan, A. R. & Engheta, N. Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity. Phys. Rev. Lett. 111, 257401 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Horsley, Sa. R. & Woolley, M. Zero-refractive-index materials and topological photonics. Nat. Phys. 17, 348–355 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jhajj, N. et al. Spatiotemporal optical vortices. Phys. Rev. X 6, 031037 (2016).


    Google Scholar
     

  • Bliokh, K. Y. Spatiotemporal vortex pulses: angular momenta and spin-orbit interaction. Phys. Rev. Lett. 126, 243601 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Ziolkowski, R. W. Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E 70, 046608 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Silveirinha, M. & Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liberal, I. & Engheta, N. Near-zero refractive index photonics. Nat. Photon. 11, 149–158 (2017).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Kinsey, N., DeVault, C., Boltasseva, A. & Shalaev, V. M. Near-zero-index materials for photonics. Nat. Rev. Mater. 4, 742–760 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liberal, I., Mahmoud, A. M., Li, Y., Edwards, B. & Engheta, N. Photonic doping of epsilon-near-zero media. Science 355, 1058–1062 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ciattoni, A., Marini, A. & Rizza, C. Efficient vortex generation in subwavelength epsilon-near-zero slabs. Phys. Rev. Lett. 118, 104301 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, M. et al. Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films. Nat. Mater. 22, 1196–1202 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Suchowski, H. et al. Phase mismatch-free nonlinear propagation in optical zero-index materials. Science 342, 1223–1226 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alam, M. Z., Leon, I. D. & Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 795–797 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, J., Hang, Z. H., Chan, C. T. & Lai, Y. Unusual percolation threshold of electromagnetic waves in double-zero medium embedded with random inclusions. Laser Photonics Rev. 9, 523–529 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Minkov, M., Williamson, I. A. D., Xiao, M. & Fan, S. Zero-index bound states in the continuum. Phys. Rev. Lett. 121, 263901 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, T. et al. Ultra-low-loss on-chip zero-index materials. Light Sci. Appl. 10, 10 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davoyan, A. R., Mahmoud, A. M. & Engheta, N. Optical isolation with epsilon-near-zero metamaterials. Opt. Express 21, 3279–3286 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Magnetically tunable zero-index metamaterials. Photon. Res. 11, 1613–1626 (2023).

    Article 

    Google Scholar
     

  • Zhou, X., Leykam, D., Chattopadhyay, U., Khanikaev, A. B. & Chong, Y. D. Realization of a magneto-optical near-zero index medium by an unpaired Dirac point. Phys. Rev. B 98, 205115 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, N., Zhang, R.-Y., Chan, C. T. & Wang, G. P. Effective medium theory for a photonic pseudospin-1/2 system. Phys. Rev. B 102, 094312 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Feng, F., Wang, N. & Wang, G. P. Magneto-optical double zero-index media and their electromagnetic properties in the bulk. New J. Phys. 24, 113023 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Hancock, S. W., Zahedpour, S., Goffin, A. & Milchberg, H. M. Free-space propagation of spatiotemporal optical vortices. Optica 6, 1547–1553 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chong, A., Wan, C., Chen, J. & Zhan, Q. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photon. 14, 350–354 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Spatiotemporal optical vortices with controllable radial and azimuthal quantum numbers. Nat. Commun. 15, 5435 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gui, G., Brooks, N. J., Kapteyn, H. C., Murnane, M. M. & Liao, C.-T. Second-harmonic generation and the conservation of spatiotemporal orbital angular momentum of light. Nat. Photon. 15, 608–613 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hancock, S. W., Zahedpour, S. & Milchberg, H. M. Second-harmonic generation of spatiotemporal optical vortices and conservation of orbital angular momentum. Optica 8, 594–597 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H., Guo, C., Jin, W., Song, A. Y. & Fan, S. Engineering arbitrarily oriented spatiotemporal optical vortices using transmission nodal lines. Optica 8, 966–971 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, H. et al. Topologically crafted spatiotemporal vortices in acoustics. Nat. Commun. 14, 6238 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, W. et al. Exploiting topological darkness in photonic crystal slabs for spatiotemporal vortex generation. Nano Lett. 24, 943–949 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Che, Z. et al. Generation of spatiotemporal vortex pulses by resonant diffractive grating. Phys. Rev. Lett. 132, 044001 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huo, P. et al. Observation of spatiotemporal optical vortices enabled by symmetry-breaking slanted nanograting. Nat. Commun. 15, 3055 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ni, X. et al. Three-dimensional reconfigurable optical singularities in bilayer photonic crystals. Phys. Rev. Lett. 132, 073804 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, G.-G. et al. Observation of an unpaired photonic Dirac point. Nat. Commun. 11, 1873 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni, J. et al. Multidimensional phase singularities in nanophotonics. Science 374, eabj0039 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Xiao, M., Zhang, Z. Q. & Chan, C. T. Surface impedance and bulk band geometric phases in one-dimensional systems. Phys. Rev. X 4, 021017 (2014).


    Google Scholar
     

  • Hu, W. et al. Measurement of a topological edge invariant in a microwave network. Phys. Rev. X 5, 011012 (2015).

    CAS 

    Google Scholar
     

  • Wang, Q., Xiao, M., Liu, H., Zhu, S. & Chan, C. T. Optical interface states protected by synthetic Weyl points. Phys. Rev. X 7, 031032 (2017).


    Google Scholar
     

  • Chua, S.-L., Lu, L., Bravo-Abad, J., Joannopoulos, J. D. & Soljačić, M. Larger-area single-mode photonic crystal surface-emitting lasers enabled by an accidental Dirac point. Opt. Lett. 39, 2072–2075 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Contractor, R. et al. Scalable single-mode surface-emitting laser via open-Dirac singularities. Nature 608, 692–698 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bilbao Crystallographic Server. Irreducible Corepresentations of the Magnetic Point Group \(4/m{m}^{{\prime} }{m}^{{\prime} }\) (N. 15.6.58) https://www.cryst.ehu.es/cgi-bin/cryst/programs/corepresentations_point.pl?magnum=15.6.58 (2020).

  • Liu, Y., Yu, Z.-M., Xiao, C. & Yang, S. A. Quantized circulation of anomalous shift in interface reflection. Phys. Rev. Lett. 125, 076801 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, H. et al. Vortical reflection and spiraling Fermi arcs with Weyl metamaterials. Phys. Rev. Lett. 125, 093904 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H., Zhou, L. & Chong, Y. D. Floquet Weyl phases in a three-dimensional network model. Phys. Rev. B 93, 144114 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Guo, Q. et al. Three dimensional photonic Dirac points in metamaterials. Phys. Rev. Lett. 119, 213901 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, L., Zhang, L., Niu, S. & Liu, X.-J. Dynamical classification of topological quantum phases. Sci. Bull. 63, 1385 (2018).

    Article 

    Google Scholar
     

  • Zhang, L., Zhang, L. & Liu, X.-J. Dynamical detection of topological charges. Phys. Rev. A 99, 053606 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yi, C.-R. et al. Observing topological charges and dynamical bulk-surface correspondence with ultracold atoms. Phys. Rev. Lett. 123, 190603 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, H. & Zhao, E. Topological invariants for quantum quench dynamics from unitary evolution. Phys. Rev. Lett. 124, 160402 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z.-Y. et al. Realization of an ideal Weyl semimetal band in a quantum gas with 3D spin-orbit coupling. Science 372, 271–276 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui, X., Zhang, R.-Y., Zhang, Z.-Q. & Chan, C. T. Photonic \({{\mathbb{Z}}}_{2}\) topological Anderson insulators. Phys. Rev. Lett. 129, 043902 (2022).

  • RELATED ARTICLES

    Most Popular

    Recent Comments