Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587–595 (2012).
Fan, F., Mann, M. E., Lee, S. & Evans, J. L. Future changes in the South Asian summer monsoon: an analysis of the CMIP3 multimodel projections. J. Clim. 25, 3909–3928 (2012).
Li, Z., Sun, Y., Li, T., Chen, W. & Ding, Y. Projections of south Asian summer monsoon under global warming from 1.5° to 5 °C. J. Clim. 34, 7913–7926 (2021).
Chen, K., Axelsson, J., Zhang, Q., Li, J. & Wang, L. EC-Earth simulations reveal enhanced inter-hemispheric thermal contrast during the last interglacial further intensified the Indian Monsoon. Geophys. Res. Lett. 49, e2021GL094551 (2022).
Wang, Y., He, C., Li, T., Zhang, C. & Gu, X. Distinctive changes of Asian–African summer monsoon in interglacial epochs and global warming scenario. Clim. Dyn. 62, 2129–2145 (2023).
Han, Z. & Li, G. The changes in south Asian summer monsoon circulation during the mid-Piacenzian warm period. Clim. Dyn. 62, 5845–5862 (2024).
Wang, B. & LinHo Rainy season of the Asian-Pacific summer monsoon. J. Clim. 15, 386–398 (2002).
Boos, W. R. & Kuang, Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463, 218–222 (2010).
Wu, G. et al. Thermal controls on the Asian summer monsoon. Sci. Rep. 2, 404 (2012).
Chen, X. & Zhou, T. Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon. Geophys. Res. Lett. 42, 9433–9439 (2015).
Li, G., Xie, S. P., He, C. & Chen, Z. Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nat. Clim. Change 7, 708–712 (2017).
Huang, X. et al. South Asian summer monsoon projections constrained by the Interdecadal Pacific Oscillation. Sci. Adv. 6, eaay6546 (2020).
Rajesh, P. V. & Goswami, B. N. A new emergent constraint corrected projections of Indian summer monsoon rainfall. Geophys. Res. Lett. 49, e2021GL096671 (2022).
Chen, Z., Zhou, T. & Chen, X. Observationally constrained projection of Afro-Asian monsoon precipitation. Nat. Commun. 13, 2552 (2022).
Chen, Y. J., Hwang, Y. T. & Lu, J. Robust increase in South Asian monsoon rainfall under warming driven by extratropical clouds and ocean. npj Clim. Atmos. Sci. 7, 318 (2024).
Cheng, Y., Wang, L., Chen, X., Zhou, T. & Turner, A. A shorter duration of the Indian summer monsoon in constrained projections. Geophys. Res. Lett. 52, e2024GL112848 (2025).
Biasutti, M. et al. Global energetics and local physics as drivers of past, present and future monsoons. Nat. Geosci. 11, 392–400 (2018).
Tierney, J. E. et al. Past climates inform our future. Science 370, 680 (2020).
Clemens, S. C. et al. Remote and local drivers of pleistocene South Asian summer monsoon precipitation: a test for future predictions. Sci. Adv. 7, eabg3848 (2021).
Feng, R. et al. Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks. Nat. Commun. 13, 1306 (2022).
Wang, Y. V. et al. Higher sea surface temperature in the Indian Ocean during the Last Interglacial weakened the South Asian monsoon. Proc. Natl Acad. Sci. USA 119, e2107720119 (2022).
He, J., Sun, W., Wang, B. & Liu, J. Opposing changes in Indian summer monsoon rainfall variability produced by orbital and anthropogenic forcing. Geophys. Res. Lett. 51, e2024GL109897 (2024).
Dahiya, K., Chilukoti, N. & Attada, R. Evaluating the climatic state of Indian summer monsoon during the mid-Pliocene period using CMIP6 model simulations. Dyn. Atmos. Ocean. 106, 101455 (2024).
Brierley, C. M. et al. Large-scale features and evaluation of the PMIP4–CMIP6 midHolocene simulations. Clim. Past 16, 1847–1872 (2020).
Kaufman, D. S. & Broadman, E. Revisiting the Holocene global temperature conundrum. Nature 614, 425–435 (2023).
Haywood, A. M. et al. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design. Clim. Past 12, 663–675 (2016).
Otto-Bliesner, B. L. et al. The PMIP4 contribution to CMIP6—Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations. Geosci. Model Dev. 10, 3979–4003 (2017).
Kageyama, M. et al. The PMIP4 contribution to CMIP6—Part 1: Overview and over-arching analysis plan. Geosci. Model Dev. 11, 1033–1057 (2018).
Li, X., Jiang, D., Tian, Z. & Yang, Y. Mid-Pliocene global land monsoon from PlioMIP1 simulations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512, 56–70 (2018).
D’Agostino, R., Bader, J., Bordoni, S., Ferreira, D. & Jungclaus, J. Northern Hemisphere monsoon response to mid-Holocene orbital forcing and greenhouse gas-induced global warming. Geophys. Res. Lett. 46, 1591–1601 (2019).
Scussolini, P. et al. Agreement between reconstructed and modeled boreal precipitation of the last interglacial. Sci. Adv. 5, eaax7047 (2019).
Wang, Y., Liu, X. & Herzschuh, U. Asynchronous evolution of the Indian and East Asian summer monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth Sci. Rev. 103, 135–153 (2010).
Meehl, G. A. & Arblaster, J. M. Mechanisms for projected future changes in South Asian monsoon precipitation. Clim. Dyn. 21, 659–675 (2003).
Sabade, S. S., Kulkarni, A. & Kripalani, R. H. Projected changes in South Asian summer monsoon by multi-model global warming experiments. Theor. Appl. Climatol. 103, 543–565 (2011).
Menon, A., Levermann, A., Schewe, J., Lehmann, J. & Frieler, K. Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst. Dyn. 4, 287–300 (2013).
Ma, J. & Yu, J.-Y. Paradox in South Asian summermonsoon circulation change: lower tropospheric strengthening and upper tropospheric weakening. Geophys. Res. Lett. 41, 2934–2940 (2014).
Li, X., Ting, M., Li, C. & Henderson, N. Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Clim. 28, 4107–4125 (2015).
Li, R., Lv, S., Han, B., Gao, Y. & Meng, X. Projections of South Asian summer monsoon precipitation based on 12 CMIP5 models. Int. J. Climatol. 37, 94–108 (2017).
Sun, Y., Ding, Y. & Dai, A. Changing links between South Asian summer monsoon circulation and tropospheric land–sea thermal contrasts under a warming scenario. Geophys. Res. Lett. 37, L02704 (2010).
Sooraj, K. P., Terray, P. & Mujumdar, M. Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models. Clim. Dyn. 45, 233–252 (2015).
Wu, Q. Y. et al. Asian summer monsoon responses to the change of land–sea thermodynamic contrast in a warming climate: CMIP6 projections. Adv. Clim. Change Res. 13, 205–217 (2022).
Li, T. et al. Distinctive South and East Asian monsoon circulation responses to global warming. Sci. Bull. 67, 762–770 (2022).
Luo, H., Wang, Z., He, C., Chen, D. & Yang, S. Future changes in South Asian summer monsoon circulation under global warming: role of the Tibetan Plateau heating. npj Clim. Atmos. Sci. 7, 103 (2024).
Chou, C., Neelin, J. D., Chen, C. A. & Tu, J. Y. Evaluating the ‘rich-get-richer’ mechanism in tropical precipitation change under global warming. J. Clim. 22, 1982–2005 (2009).
Seager, R., Naik, N. & Vecchi, G. A. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim. 23, 4651–4668 (2010).
Jin, Q. & Wang, C. A revival of Indian summer monsoon rainfall since 2002. Nat. Clim. Change 7, 587–594 (2017).
Li, B. et al. Middle east warming in spring enhances summer rainfall over Pakistan. Nat. Commun. 14, 7635 (2023).
Anoop, A., Prasad, S., Krishnan, R., Naumann, R. & Dulski, P. Intensified monsoon and spatiotemporal changes in precipitation patterns in the NW Himalaya during the early-mid Holocene. Quat. Int. 313–314, 74–84 (2013).
Dortch, J. M. et al. Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quat. Sci. Rev. 28, 1037–1054 (2009).
Gesch, D. B., Verdin, K. L. & Greenlee, S. K. New land surface digital elevation model covers the Earth. Eos 80, 69–70 (1999).
deMenocal, P. B. African climate change and faunal evolution during the Pliocene–Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004).
Chang, Z., Xiao, J., Lü, L. & Yao, H. Abrupt shifts in the Indian monsoon during the Pliocene marked by high-resolution terrestrial records from the Yuanmou Basin in southwest China. J. Asian Earth Sci. 37, 166–175 (2010).
Yao, Y.-F. et al. Monsoon versus uplift in Southwestern China–Late Pliocene climate in Yuanmou Basin, Yunnan. PLoS ONE 7, e37760 (2012).
Xie, S. et al. Palaeoclimatic estimates for the Late Pliocene based on leaf physiognomy from Western Yunnan, China. Turkish J. Earth Sci. 21, 251–261 (2012).
Gaur, R. & Chopra, S. R. K. Taphonomy, fauna, environment and ecology of Upper Sivaliks (Plio-Pleistocene) near Chandigarh, India. Nature 308, 353–355 (1984).
Sanyal, P., Bhattacharya, S. K., Kumar, R., Ghosh, S. K. & Sangode, S. J. Mio–Pliocene monsoonal record from Himalayan foreland basin (Indian Siwalik) and its relation to vegetational change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 205, 23–41 (2004).
Burns, S. J., Fleitmann, D., Matter, A., Neff, U. & Mangini, A. Speleothem evidence from Oman for continental pluvial events during interglacial periods. Geology 29, 623–626 (2001).
Cai, Y. et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y. Proc. Natl Acad. Sci. USA 112, 2954–2959 (2015).
Magiera, M. et al. Local and regional Indian summer monsoon precipitation dynamics during Termination II and the Last Interglacial. Geophys. Res. Lett. 46, 12454–12463 (2019).
An, Z. et al. Glacial–interglacial Indian summer monsoon dynamics. Science 333, 719–723 (2011).
Jiang, N., Yan, Q. & Wang, H. General characteristics of climate change over China and associated dynamic mechanisms during the Last Interglacial based on PMIP4 simulations. Glob. Planet. Change 208, 103700 (2022).
Kathayat, G. et al. Indian monsoon variability on millennial-orbital timescales. Sci. Rep. 6, 4–10 (2016).
Cai, Y. et al. Large variations of oxygen isotopes in precipitation over south-central Tibet during Marine Isotope Stage 5. Geology 38, 243–246 (2010).
Hodell, D. A. et al. Paleoclimate of Southwestern China for the past 50,000 yr inferred from lake sediment records. Quat. Res. 52, 369–380 (1999).
Trivedi, A. in Holocene Climate Change and Environment (eds Kumaran, N. & Damodara, P.) 611–628 (Elsevier, 2022).
Dixit, S. & Bera, S. K. Holocene climatic fluctuations from Lower Brahmaputra flood plain of Assam, northeast India. J. Earth Syst. Sci. 121, 135–147 (2012).
Dixit, S. & Bera, S. K. Pollen-inferred vegetation vis-á-vis climate dynamics since Late Quaternary from western Assam, Northeast India: signal of global climatic events. Quat. Int. 286, 56–68 (2013).
Ghosh, R. et al. Late Quaternary climate variability and vegetation response in Ziro Lake Basin, Eastern Himalaya: a multiproxy approach. Quat. Int. 325, 13–29 (2014).
Singh, G., Wasson, R. J. & Agrawal, D. P. Vegetational and seasonal climatic changes since the last full glacial in the Thar Desert, northwestern India. Rev. Palaeobot. Palynol. 64, 351–358 (1990).
Enzel, Y. et al. High-resolution holocene environmental changes in the Thar Desert, northwestern India. Science 284, 125–128 (1999).
Zhu, L. et al. A ~30,000-year record of environmental changes inferred from Lake Chen Co, Southern Tibet. J. Paleolimnol. 42, 343–358 (2009).
Zhu, L. et al. Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau, China. The Holocene 18, 831–839 (2008).
Phadtare, N. R. Sharp DEcrease in Summer Monsoon Strength 4000–3500 cal yr B.P. in the Central Higher Himalaya of India based on pollen evidence from alpine peat. Quat. Res. 53, 122–129 (2000).
Morinaga, H. et al. Oxygen-18 and carbon-13 records for the last 14,000 years from lacustrine carbonates of Siling-Co (Lake) in the Qinghai-Tibetan Plateau. Geophys. Res. Lett. 20, 2909–2912 (1993).
Demske, D., Tarasov, P. E., Wünnemann, B. & Riedel, F. Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 279, 172–185 (2009).
Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 12, 1–35 (2020).
Feng, R., Otto-Bliesner, B. L., Brady, E. C. & Rosenbloom, N. Increased climate response and earth system sensitivity from CCSM4 to CESM2 in Mid-Pliocene simulations. J. Adv. Model. Earth Syst. 12, e2019MS002033 (2020).
Otto-Bliesner, B. L. et al. A comparison of the CMIP6 midHolocene and lig127k simulations in CESM2. Paleoceanogr. Paleoclimatol. 35, e2020PA003957 (2020).
Döscher, R. et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 15, 2973–3020 (2022).
Zhang, Q. et al. Simulating the mid-Holocene, last interglacial and mid-Pliocene climate with EC-Earth3-LR. Geosci. Model Dev. 14, 1147–1169 (2021).
Nazarenko, L. S. et al. Future climate change under SSP emission scenarios with GISS-E2.1. J. Adv. Model. Earth Syst. 14, 1–25 (2022).
Kelley, M. et al. GISS‐E2.1: configurations and climatology. J. Adv. Model. Earth Syst. 12, e2019MS002025 (2020).
Hewitt, H. T. et al. Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system. Geosci. Model Dev. 4, 223–253 (2011).
Williams, C. J. R. et al. Simulation of the mid-Pliocene Warm Period using HadGEM3: experimental design and results from model-model and model–data comparison. Clim. Past 17, 2139–2163 (2021).
Williams, C. et al. The UK contribution to CMIP6/PMIP4: mid-Holocene and Last Interglacial experiments with HadGEM3, and comparison to the pre-industrial era and proxy data. Clim. Past 16, 1429–1450 (2020).
Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst. 12, 1–52 (2020).
Guo, C. et al. Description and evaluation of NorESM1-F: a fast version of the Norwegian Earth System Model (NorESM). Geosci. Model Dev. 12, 343–362 (2019).
Li, X., Guo, C., Zhang, Z., Helge Otterä, O. & Zhang, R. PlioMIP2 simulations with NorESM-L and NorESM1-F. Clim. Past 16, 183–197 (2020).
Bartlein, P. J. & Shafer, S. L. Paleo calendar-effect adjustments in time-slice and transient climate-model simulations (PaleoCalAdjust v1.0): impact and strategies for data analysis. Geosci. Model Dev. 12, 3889–3913 (2019).
He, L., Zhou, T. & Chen, X. South Asian summer rainfall from CMIP3 to CMIP6 models: biases and improvements. Clim. Dyn. 61, 1049–1061 (2022).
Zhang, T., Jiang, X., Yang, S., Chen, J. & Li, Z. A predictable prospect of the South Asian summer monsoon. Nat. Commun. 13, 7080 (2022).
Seager, R. & Henderson, N. Diagnostic computation of moisture budgets in the ERA-interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. J. Clim. 26, 7876–7901 (2013).
Chou, C., Chen, C. A., Tan, P. H. & Chen, K. T. Mechanisms for global warming impacts on precipitation frequency and intensity. J. Clim. 25, 3291–3306 (2012).
Huang, P., Xie, S., Hu, K., Huang, G. & Huang, R. Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci. 6, 357–361 (2013).
Huang, P. & Xie, S. P. Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate. Nat. Geosci. 8, 922–926 (2015).
Neelin, J. D. & Held, I. M. Modeling tropical convergence based on the moist static energy budget. Mon. Weather Rev. 115, 3–12 (1987).
Wu, B., Zhou, T. & Li, T. Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Clim. 30, 9621–9635 (2017).
Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019).
Brient, F. Reducing uncertainties in climate projections with emergent constraints: concepts, examples and prospects. Adv. Atmos. Sci. 37, 1–15 (2020).
Gent, P. R. et al. The Community Climate System Model version 4. J. Clim. 24, 4973–4991 (2011).
Wang, B., Bao, Q., Hoskins, B., Wu, G. & Liu, Y. Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett. 35, 1–5 (2008).
Khodri, M. et al. Tropical explosive volcanic eruptions can trigger El Ninõ by cooling tropical Africa. Nat. Commun. 8, 778 (2017).
O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
He, J., Soden, B. J. & Kirtman, B. The robustness of the atmospheric circulation and precipitation response to future anthropogenic surface warming. Geophys. Res. Lett. 41, 2614–2622 (2014).
He, J. & Soden, B. J. Anthropogenic weakening of the tropical circulation: the relative roles of direct CO2 forcing and sea surface temperature change. J. Clim. 28, 8728–8742 (2015).
Shaw, T. A. & Voigt, A. Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat. Geosci. 8, 560–566 (2015).
Li, X. & Ting, M. Understanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change. Clim. Dyn. 49, 2863–2880 (2017).
Watanabe, M. & Kimoto, M. Atmosphere–ocean thermal coupling in the North Atlantic: a positive feedback. Q. J. R. Meteorol. Soc. 126, 3343–3369 (2000).
He, L., Zhou, T. & Guo, Z. Data and code for “Past warm intervals inform the future South Asian summer monsoon”. Zenodo https://doi.org/10.5281/zenodo.15001239 (2025).