Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).
Tan, Z. K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).
Lu, M. et al. Metal halide perovskite light-emitting devices: promising technology for next-generation displays. Adv. Funct. Mater. 29, 1902008 (2019).
Sun, Y. et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615, 830–835 (2023).
Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 562, 245–248 (2018).
Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).
Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).
Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. 16, 637–643 (2022).
Han, T.-H. et al. A roadmap for the commercialization of perovskite light emitters. Nat. Rev. Mater. 7, 757–777 (2022).
Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).
Li, H. et al. Nanosurface-reconstructed perovskite for highly efficient and stable active-matrix light-emitting diode display. Nat. Nanotechnol. 19, 638–645 (2024).
Kong, L. et al. Fabrication of red-emitting perovskite LEDs by stabilizing their octahedral structure. Nature 631, 73–79 (2024).
Wang, Y.-K. et al. Long-range order enabled stability in quantum dot light-emitting diodes. Nature 629, 586–591 (2024).
Zhao, F. et al. Iodotrimethylsilane as a reactive ligand for surface etching and passivation of perovskite nanocrystals toward efficient pure-red to deep-red LEDs. Angew. Chem. Int. Ed. 62, e202311089 (2023).
Liu, X. K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).
Fakharuddin, A. et al. Perovskite light-emitting diodes. Nat. Electron. 5, 203–216 (2022).
Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).
Zeng, J. et al. Switchable interfacial reaction enables bright and stable deep-red perovskite light-emitting diodes. Nat. Photon. 18, 325–333 (2024).
Wang, K. H. et al. High quality CsPbI3-xBrx thin films enabled by synergetic regulation of fluorine polymers and amino acid molecules for efficient pure red light emitting diodes. Adv. Opt. Mater. 9, 2001684 (2020).
Andaji-Garmaroudi, Z. et al. Elucidating and mitigating degradation processes in perovskite light-emitting diodes. Adv. Energy Mater. 10, 2002676 (2020).
Liu, P. et al. Quasi-2D CsPbBrxI3-x composite thin films for efficient and stable red perovskite light-emitting diodes. Adv. Opt. Mater. 9, 2101419 (2021).
Song, Y.-H. et al. Planar defect-free pure red perovskite light-emitting diodes via metastable phase crystallization. Sci. Adv. 8, eabq2321 (2022).
Li, B., Tang, B. & Fan, F. Transient absorption spectrometer using excitation by pulse current. PCT patent WO2022121082A1 (2022).
Li, B., Tang, B. & Fan, F. Transient absorption spectrometer using excitation by pulse current. CN patent CN112683797B (2021).
Li, B. et al. Origin of the efficiency roll-off in quantum dot light-emitting diodes: an electrically excited transient absorption spectroscopy study. Nano Lett. 24, 10650–10655 (2024).
Haus, J. W., Zhou, H. S., Honma, I. & Komiyama, H. Quantum confinement in semiconductor heterostructure nanometer-size particles. Phys. Rev. B 47, 1359–1365 (1993).
Bui, H., Karpulevich, A. & Bester, G. Excitonic fine structure of zinc-blende and wurtzite colloidal CdSe nanocrystals and comparison to effective mass results. Phys. Rev. B 101, 115414 (2020).
Ahamdi, S. S. & Amiri, P. Stability, electronic, thermodynamic, and optical aspects of CsPbI3-xBrx (x=0, 1, 2, 3) compounds: an ab-initio study. Solid State Commun. 372, 115304 (2023).
Wang, X. et al. Strong high-energy exciton electroluminescence from the light holes of polytypic quantum dots. Nat. Commun. 15, 6334 (2024).
Gao, Y. et al. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting. Nat. Nanotechnol. 18, 1168–1174 (2023).
Li, Y.-L., Huang, Y.-R. & Lai, Y.-H. Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness. Appl. Phys. Lett. 91, 181113 (2007).
Li, B. et al. Advances in understanding quantum dot light-emitting diodes. Nat. Rev. Electr. Eng. 1, 412–425 (2024).
Qing, J. et al. Spacer cation alloying in Ruddlesden–Popper perovskites for efficient red light-emitting diodes with precisely tunable wavelengths. Adv. Mater. 33, 2104381 (2021).
Fu, X. et al. Mixed-halide perovskites with halogen bond induced interlayer locking structure for stable pure-red PeLEDs. Nano Lett. 23, 6465–6473 (2023).
Metcalf, I. et al. Synergy of 3D and 2D perovskites for durable, efficient solar cells and beyond. Chem. Rev. 123, 9565–9652 (2023).
Pradhan, S. et al. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 14, 72–79 (2019).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 1–4 (2008).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Jang, C. H. et al. Sky-blue-emissive perovskite light-emitting diodes: crystal growth and interfacial control using conjugated polyelectrolytes as a hole-transporting layer. ACS Nano 14, 13246–13255 (2020).
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).