Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).
Ran, S. et al. Extreme magnetic field-boosted superconductivity. Nat. Phys. 15, 1250–1254 (2019).
Ran, S. et al. Nearly ferromagnetic spin-triplet superconductivity. Science 365, 684–687 (2019).
Lu, J. et al. Full superconducting dome of strong Ising protection in gated monolayer WS2. Proc. Natl Acad. Sci. USA 115, 3551–3556 (2018).
de la Barrera, S. C. et al. Cascade of isospin phase transitions in Bernal-stacked bilayer graphene at zero magnetic field. Nat. Phys. 18, 771–775 (2022).
Seiler, A. M. et al. Quantum cascade of correlated phases in trigonally warped bilayer graphene. Nature 608, 298–302 (2022).
Wang, Z. et al. Origin and magnitude of ‘designer’ spin–orbit interaction in graphene on semiconducting transition metal dichalcogenides. Phys. Rev. X 6, 041020 (2016).
Gmitra, M. & Fabian, J. Proximity effects in bilayer graphene on monolayer WSe2: field-effect spin valley locking, spin–orbit valve, and spin transistor. Phys. Rev. Lett. 119, 146401 (2017).
Khoo, J. Y., Morpurgo, A. F. & Levitov, L. On-demand spin–orbit interaction from which-layer tunability in bilayer graphene. Nano Lett. 17, 7003–7008 (2017).
Khoo, J. Y. & Levitov, L. Tunable quantum Hall edge conduction in bilayer graphene through spin–orbit interaction. Phys. Rev. B 98, 115307 (2018).
Island, J. O. et al. Spin–orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect. Nature 571, 85–89 (2019).
Wang, D. et al. Quantum Hall effect measurement of spin–orbit coupling strengths in ultraclean bilayer graphene/WSe2 heterostructures. Nano Lett. 19, 7028–7034 (2019).
Li, Y. & Koshino, M. Twist-angle dependence of the proximity spin–orbit coupling in graphene on transition-metal dichalcogenides. Phys. Rev. B 99, 075438 (2019).
Zhang, Y. et al. Enhanced superconductivity in spin–orbit proximitized bilayer graphene. Nature 613, 268–273 (2023).
Holleis, L. et al. Nematicity and orbital depairing in superconducting Bernal bilayer graphene. Nat. Phys. 21, 444–450 (2025).
Li, C. et al. Tunable superconductivity in electron- and hole-doped Bernal bilayer graphene. Nature 631, 300–306 (2024).
Chou, Y.-Z., Wu, F. & Das Sarma, S. Enhanced superconductivity through virtual tunneling in Bernal bilayer graphene coupled to WSe2. Phys. Rev. B 106, L180502 (2022).
David, A., Rakyta, P., Kormányos, A. & Burkard, G. Induced spin–orbit coupling in twisted graphene–transition metal dichalcogenide heterobilayers: twistronics meets spintronics. Phys. Rev. B 100, 085412 (2019).
Naimer, T., Zollner, K., Gmitra, M. & Fabian, J. Twist-angle dependent proximity induced spin-orbit coupling in graphene/transition metal dichalcogenide heterostructures. Phys. Rev. B 104, 195156 (2021).
Zollner, K., João, S. M., Nikolić, B. K. & Fabian, J. Twist- and gate-tunable proximity spin-orbit coupling, spin relaxation anisotropy, and charge-to-spin conversion in heterostructures of graphene and transition metal dichalcogenides. Phys. Rev. B 108, 235166 (2023).
Li, H. et al. Electrode-free anodic oxidation nanolithography of low-dimensional materials. Nano Lett. 18, 8011–8015 (2018).
Masseroni, M. et al. Spin-orbit proximity in MoS2/bilayer graphene heterostructures. Nat. Commun. 15, 9251 (2024).
Seiler, A. M. et al. Layer-selective spin–orbit coupling and strong correlation in bilayer graphene. Preprint at https://arxiv.org/abs/2403.17140 (2024).
Sun, L. et al. Spin-orbit proximity in MoS2/bilayer graphene heterostructures. Nat. Commun. 14, 3771 (2023).
McMillan, W. L. Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331–344 (1968).
Allen, P. B. & Dynes, R. C. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 12, 905–922 (1975).
Tolmachev, V. V. Logarithmic criterion for superconductivity. Dokl. Akad. Nauk SSSR 140, 563–566 (1961).
Morel, P. & Anderson, P. W. Calculation of the superconducting state parameters with retarded electron–phonon interaction. Phys. Rev. 125, 1263–1271 (1962).
Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).
Kedves, M. et al. Stabilizing the inverted phase of a WSe2/BLG/WSe2 heterostructure via hydrostatic pressure. Nano Lett. 23, 9508–9514 (2023).
McCann, E. & Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013).
Dong, Z., Davydova, M., Ogunnaike, O. & Levitov, L. Isospin- and momentum-polarized orders in bilayer graphene. Phys. Rev. B 107, 075108 (2023).
Lin, J.-X. et al. Spontaneous momentum polarization and diodicity in Bernal bilayer graphene. Preprint at https://arxiv.org/abs/2302.04261 (2023).
Nuckolls, K. P. et al. Quantum textures of the many-body wavefunctions in magic-angle graphene. Nature 620, 525–532 (2023).
Kim, H. et al. Imaging inter-valley coherent order in magic-angle twisted trilayer graphene. Nature 623, 942–948 (2023).
Arp, T. et al. Intervalley coherence and intrinsic spin–orbit coupling in rhombohedral trilayer graphene. Nat. Phys. 20, 1413–1420 (2024).
Chatterjee, S., Wang, T., Berg, E. & Zaletel, M. P. Inter-valley coherent order and isospin fluctuation mediated superconductivity in rhombohedral trilayer graphene. Nat. Commun. 13, 6013 (2022).
Koh, J. M., Thomson, A., Alicea, J. & Lantagne-Hurtubise, É. Symmetry-broken metallic orders in spin–orbit-coupled Bernal bilayer graphene. Phys. Rev. B 110, 245118 (2024).
You, Y.-Z. & Vishwanath, A. Kohn–Luttinger superconductivity and intervalley coherence in rhombohedral trilayer graphene. Phys. Rev. B 105, 134524 (2022).
Xie, M. & Das Sarma, S. Flavor symmetry breaking in spin–orbit coupled bilayer graphene. Phys. Rev. B 107, L201119 (2023).
Thomson, A., Sorensen, I. M., Nadj-Perge, S. & Alicea, J. Gate-defined wires in twisted bilayer graphene: from electrical detection of intervalley coherence to internally engineered Majorana modes. Phys. Rev. B 105, L081405 (2022).
Koh, J. M., Alicea, J. & Lantagne-Hurtubise, É. Correlated phases in spin–orbit-coupled rhombohedral trilayer graphene. Phys. Rev. B 109, 035113 (2024).
Zhumagulov, Y., Kochan, D. & Fabian, J. Swapping exchange and spin-orbit induced correlated phases in proximitized Bernal bilayer graphene. Phys. Rev. B 110, 045427 (2024).
Dong, Z., Lantagne-Hurtubise, É. & Alicea, J. Superconductivity from spin-canting fluctuations in rhombohedral graphene. Preprint at https://arxiv.org/abs/2406.17036 (2024).
Frigeri, P. A., Agterberg, D. F., Koga, A. & Sigrist, M. Superconductivity without inversion symmetry: MnSi versus CePt3Si. Phys. Rev. Lett. 92, 097001 (2004).
Lu, J. M. et al. Evidence for two-dimensional Isuperconductivity in gated MoS2. Science 350, 1353–1357 (2015).
Saito, Y. et al. Superconductivity protected by spin–valley locking in ion-gated MoS2. Nat. Phys. 12, 144–149 (2016).
Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10, 407–411 (2015).
Szentpéteri, B. et al. Tuning the proximity induced spin–orbit coupling in bilayer graphene/WSe2 heterostructures with pressure. Preprint at https://arxiv.org/abs/2409.20062 (2024).
Cohen, M. H. & Falicov, L. M. Magnetic breakdown in crystals. Phys. Rev. Lett. 7, 231–233 (1961).