Friday, May 2, 2025
No menu items!
HomeNatureA battery-free nanofluidic intracellular delivery patch for internal organs

A battery-free nanofluidic intracellular delivery patch for internal organs

  • Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pasi, K. J. et al. Multiyear follow-up of AAV5-hFVIII-SQ gene therapy for hemophilia A. N. Engl. J. Med. 382, 29–40 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107–112 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kulkarni, J. A. et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 16, 630–643 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldberg, M. S. Improving cancer immunotherapy through nanotechnology. Nat. Rev. Cancer 19, 587–602 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hammond, S. M. et al. Delivery of oligonucleotide-based therapeutics: challenges and opportunities. EMBO Mol. Med. 13, e13243 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khvorova, A. & Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238–248 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendell, J. R. et al. Current clinical applications of in vivo gene therapy with AAVs. Mol. Ther. 29, 464–488 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Z., Ukidve, A., Kim, J. & Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell 181, 151–167 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vargason, A. M., Anselmo, A. C. & Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 5, 951–967 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Dowdy, S. F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 35, 222–229 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, X. et al. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv. Drug Deliv. Rev. 168, 158–180 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marx, V. Cell biology: delivering tough cargo into cells. Nat. Methods 13, 37–40 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Aihara, H. & Miyazaki, J. Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol. 16, 867–870 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, A. M. et al. In vivo laser-mediated retinal ganglion cell optoporation using KV1.1 conjugated gold nanoparticles. Nano Lett. 18, 6981–6988 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Carpentier, A. et al. Clinical trial of blood–brain barrier disruption by pulsed ultrasound. Sci. Transl. Med. 8, 343re342 (2016).

    Article 

    Google Scholar
     

  • dal Maschio, M. et al. High-performance and site-directed in utero electroporation by a triple-electrode probe. Nat. Commun. 3, 960 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kar, A. et al. Wearable and implantable devices for drug delivery: applications and challenges. Biomaterials 283, 121435 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Haasteren, J., Li, J., Scheideler, O. J., Murthy, N. & Schaffer, D. V. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat. Biotechnol. 38, 845–855 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Shao, H. et al. New technologies for analysis of extracellular vesicles. Chem. Rev. 118, 1917–1950 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. ARMMs as a versatile platform for intracellular delivery of macromolecules. Nat. Commun. 9, 960 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Jong, O. G. et al. A CRISPR–Cas9-based reporter system for single-cell detection of extracellular vesicle-mediated functional transfer of RNA. Nat. Commun. 11, 1113 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coccolini, F. et al. Liver trauma: WSES 2020 guidelines. World J. Emerg. Surg. 15, 24 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kisseleva, T. & Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 18, 151–166 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Yamakawa, S. & Hayashida, K. Advances in surgical applications of growth factors for wound healing. Burns Trauma 7, 10 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, Z. et al. Epidermal growth factor receptor signaling regulates β cell proliferation in adult mice. J. Biol. Chem. 291, 22630–22637 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 184, 2239–2254 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graham, T. A. & Sottoriva, A. Measuring cancer evolution from the genome. J. Pathol. 241, 183–191 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc. Natl Acad. Sci. USA 104, 12111–12116 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Husemann, Y. et al. Systemic spread is an early step in breast cancer. Cancer Cell 13, 58–68 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Attalla, S., Taifour, T., Bui, T. & Muller, W. Insights from transgenic mouse models of PyMT-induced breast cancer: recapitulating human breast cancer progression in vivo. Oncogene 40, 475–491 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huen, M. S., Sy, S. M. & Chen, J. BRCA1 and its toolbox for the maintenance of genome integrity. Nat. Rev. Mol. Cell Biol. 11, 138–148 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tutt, A. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376, 235–244 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LaFargue, C. J., Dal Molin, G. Z., Sood, A. K. & Coleman, R. L. Exploring and comparing adverse events between PARP inhibitors. Lancet Oncol. 20, e15–e28 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parent, M. et al. PLGA in situ implants formed by phase inversion: critical physicochemical parameters to modulate drug release. J. Control. Release 172, 292–304 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fredenberg, S., Wahlgren, M., Reslow, M. & Axelsson, A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems–a review. Int. J. Pharm. 415, 34–52 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pagani, O. et al. International guidelines for management of metastatic breast cancer: can metastatic breast cancer be cured? J. Natl Cancer Inst. 102, 456–463 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, X. & Mu, P. Targeting breast cancer metastasis. Breast Cancer 9, 23–34 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kato, T. et al. A novel human tRNA–dihydrouridine synthase involved in pulmonary carcinogenesis. Cancer Res. 65, 5638–5646 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Z., Avila, R., Huang, Y. & Rogers, J. A. Flexible and stretchable antennas for biointegrated electronics. Adv. Mater. 32, e1902767 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ghovanloo, M. & Najafi, K. A wideband frequency-shift keying wireless link for inductively powered biomedical implants. IEEE Trans. Circuits Syst. I 51, 2374–2383 (2004).

    Article 

    Google Scholar
     

  • Li, X. et al. Lipoplex-mediated single-cell transfection via droplet microfluidics. Small 14, e1802055 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Annunziato, S. et al. Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev. 30, 1470–1480 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vella, L. J. et al. A rigorous method to enrich for exosomes from brain tissue. J. Extracell. Vesicles 6, 1348885 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohammed, B. M., Monroe, D. M. & Gailani, D. Mouse models of hemostasis. Platelets 31, 417–422 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Self-adapting hydrogel to improve the therapeutic effect in wound-healing. ACS Appl. Mater. Interfaces 10, 26046–26055 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki, S. et al. The beneficial effect of a prostaglandin 12 analog on ischemic rat liver. Transplantation 52, 979–983 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, Y. et al. Mesenchymal stem cells improve mouse non-heart-beating liver graft survival by inhibiting Kupffer cell apoptosis via TLR4–ERK1/2–Fas/FasL–caspase3 pathway regulation. Stem Cell Res. Ther. 7, 157 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diaz-Cruz, E. S. et al. BRCA1 deficient mouse models to study pathogenesis and therapy of triple negative breast cancer. Breast Dis. 32, 85–97 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duarte, A. A. et al. BRCA-deficient mouse mammary tumor organoids to study cancer-drug resistance. Nat. Methods 15, 134–140 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, K. et al. A comparative pharmacokinetic study of PARP inhibitors demonstrates favorable properties for niraparib efficacy in preclinical tumor models. Oncotarget 9, 37080–37096 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, T. et al. Inducible and coupled expression of the polyomavirus middle T antigen and Cre recombinase in transgenic mice: an in vivo model for synthetic viability in mammary tumour progression. Breast Cancer Res. 16, R11 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hutter, C. & Zenklusen, J. C. The Cancer Genome Atlas: creating lasting value beyond its data. Cell 173, 283–285 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeo, S. K. et al. Single-cell RNA-sequencing reveals distinct patterns of cell state heterogeneity in mouse models of breast cancer. eLife 9, e58810 (2020).

  • Li, W., Germain, R. N. & Gerner, M. Y. High-dimensional cell-level analysis of tissues with Ce3D multiplex volume imaging. Nat. Protoc. 14, 1708–1733 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olive, P. L. & Banath, J. P. The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc. 1, 23–29 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baslan, T. & Hicks, J. Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nat. Rev. Cancer 17, 557–569 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dean, F. B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA 99, 5261–5266 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments