Thursday, May 1, 2025
No menu items!
HomeNatureObservation of edge and bulk states in a three-site Kitaev chain

Observation of edge and bulk states in a three-site Kitaev chain

  • Sau, J. D. & Sarma, S. D. Realizing a robust practical Majorana chain in a quantum-dot-superconductor linear array. Nat. Commun. 3, 964 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Leijnse, M. & Flensberg, K. Parity qubits and poor man’s Majorana bound states in double quantum dots. Phys. Rev. B 86, 134528 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Fulga, I. C., Haim, A., Akhmerov, A. R. & Oreg, Y. Adaptive tuning of Majorana fermions in a quantum dot chain. New J. Phys. 15, 045020 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys. Usp. 44, 131 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lutchyn, R. M., Sau, J. D. & Sarma, S. D. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Oreg, Y., Refael, G. & Oppen, F.von Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Wen, X.-G. Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 44, 405–473 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Prada, E. et al. From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nat. Rev. Phys. 2, 575–594 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C.-X., Sau, J. D., Stanescu, T. D. & Sarma, S. D. Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks. Phys. Rev. B 96, 075161 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Reeg, C., Dmytruk, O., Chevallier, D., Loss, D. & Klinovaja, J. Zero-energy Andreev bound states from quantum dots in proximitized Rashba nanowires. Phys. Rev. B 98, 245407 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vuik, A., Nijholt, B., Akhmerov, A. R. & Wimmer, M. Reproducing topological properties with quasi-Majorana states. SciPost Phys. 7, 061 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Pan, H. & Sarma, S. D. Physical mechanisms for zero-bias conductance peaks in Majorana nanowires. Phys. Rev. Res. 2, 013377 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sarma, S. D. & Pan, H. Disorder-induced zero-bias peaks in Majorana nanowires. Phys. Rev. B 103, 195158 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kouwenhoven, L. Perspective on Majorana bound-states in hybrid superconductor-semiconductor nanowires. Mod. Phys. Lett. B 39, 2540002 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. et al. Topological superconductivity induced by ferromagnetic metal chains. Phys. Rev. B 90, 235433 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dvir, T. et al. Realization of a minimal Kitaev chain in coupled quantum dots. Nature 614, 445–450 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Haaf, S. L. D. et al. A two-site Kitaev chain in a two-dimensional electron gas. Nature 630, 329–334 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bordin, A. et al. Enhanced Majorana stability in a three-site Kitaev chain. Nat. Nanotechnol. https://doi.org/10.1038/s41565-025-01894-4 (2025).

  • Liu, C.-X., Wang, G., Dvir, T. & Wimmer, M. Tunable superconducting coupling of quantum dots via Andreev bound states in semiconductor-superconductor nanowires. Phys. Rev. Lett. 129, 267701 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bordin, A. et al. Tunable crossed Andreev reflection and elastic cotunneling in hybrid nanowires. Phys. Rev. X 13, 031031 (2023).

    CAS 

    Google Scholar
     

  • Bordin, A. et al. Crossed andreev reflection and elastic cotunneling in three quantum dots coupled by superconductors. Phys. Rev. Lett. 132, 056602 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z.-H., Zeng, C. & Xu, H. Q. Coupling of quantum-dot states via elastic cotunneling and crossed Andreev reflection in a minimal Kitaev chain. Phys. Rev. B 110, 115302 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wang, G. et al. Singlet and triplet Cooper pair splitting in hybrid superconducting nanowires. Nature 612, 448–453 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsintzis, A., Souto, R. S. & Leijnse, M. Creating and detecting poor man’s Majorana bound states in interacting quantum dots. Phys. Rev. B 106, L201404 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luethi, M., Legg, H. F., Loss, D. & Klinovaja, J. From perfect to imperfect poor man’s majoranas in minimal kitaev chains. Phys. Rev. B 110, 245412 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C.-X. et al. Scaling up a sign-ordered Kitaev chain without magnetic flux control. Phys. Rev. Res. 7, L012045 (2025).

  • Wang, Q. et al. Triplet correlations in Cooper pair splitters realized in a two-dimensional electron gas. Nat. Commun. 14, 4876 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zatelli, F. et al. Robust poor man’s Majorana zero modes using Yu-Shiba-Rusinov states. Nat. Commun. 15, 7933 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bozkurt, A. M. et al. Interaction-induced strong zero modes in short quantum dot chains with time-reversal symmetry. Preprint at arxiv.org/abs/2405.14940 (2024).

  • Liu, C.-X. et al. Enhancing the excitation gap of a quantum-dot-based Kitaev chain. Commun. Phys. 7, 235 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Pandey, B., Gupta, G. K., Alvarez, G., Okamoto, S. & Dagotto, E. Diabatic error and propagation of Majorana zero modes in interacting quantum dots systems. Preprint at arxiv.org/abs/2501.06288 (2025).

  • Pandey, B., Okamoto, S. & Dagotto, E. Nontrivial fusion of Majorana zero modes in interacting quantum-dot arrays. Phys. Rev. Res. 6, 033314 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pandey, B., Kaushal, N., Alvarez, G. & Dagotto, E. Majorana zero modes in Y-shape interacting Kitaev wires. NPJ Quantum Mater. 8, 51 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Leumer, N., Marganska, M., Muralidharan, B. & Grifoni, M. Exact eigenvectors and eigenvalues of the finite Kitaev chain and its topological properties. J. Phys. Condens. Matter 32, 445502 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ezawa, M. Even-odd effect on robustness of Majorana edge states in short Kitaev chains. Phys. Rev. B 109, L161404 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luethi, M., Legg, H. F., Loss, D. & Klinovaja, J. The fate of poor man’s Majoranas in the long Kitaev chain limit. Preprint at arxiv.org/abs/2408.10030 (2025).

  • Svensson, V. & Leijnse, M. Quantum dot based Kitaev chains: Majorana quality measures and scaling with increasing chain length. Phys. Rev. B 110, 155436 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Alicea, J., Oreg, Y., Refael, G., Oppen, F. & Fisher, M. P. A. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 7, 412–417 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Boross, P. & Pályi, A. Braiding-based quantum control of a Majorana qubit built from quantum dots. Phys. Rev. B 109, 125410 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tsintzis, A., Souto, R. S., Flensberg, K., Danon, J. & Leijnse, M. Majorana qubits and non-abelian physics in quantum dot–based minimal Kitaev chains. PRX Quantum 5, 010323 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Liu, C.-X., Pan, H., Setiawan, F., Wimmer, M. & Sau, J. D. Fusion protocol for Majorana modes in coupled quantum dots. Phys. Rev. B 108, 085437 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pan, H., Sarma, S. D. & Liu, C.-X. Rabi and Ramsey oscillations of a Majorana qubit in a quantum dot-superconductor array. Phys. Rev. B 111, 075416 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Moehle, C. M. et al. InSbAs two-dimensional electron gases as a platform for topological superconductivity. Nano Lett. 21, 9990–9996 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinez, E.A. et al. Measurement circuit effects in three-terminal electrical transport measurements. Preprint at arxiv.org/abs/2104.02671 (2021).

  • Vigneau, F. et al. Probing quantum devices with radio-frequency reflectometry. Appl. Phys. Rev. 10, 021305 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kulesh, I. et al. A flux-controlled two-site Kitaev chain. Preprint at arxiv.org/abs/2501.15912 (2025).

  • Hornibrook, J. M. et al. Frequency multiplexing for readout of spin qubits. Appl. Phys. Lett. 104, 103108 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Pavešič, L., Aguado, R. & Žitko, R. Strong-coupling theory of quantum-dot Josephson junctions: Role of a residual quasiparticle. Phys. Rev. B 109, 125131 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Beenakker, C. W. J. Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Phys. Rev. B 44, 1646–1656 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haaf, S. L. D. Data and code for “Edge and bulk states in a three-site Kitaev chain”. Zenodo https://doi.org/10.5281/zenodo.15020006 (2025).

  • Jellinggaard, A., Grove-Rasmussen, K., Madsen, M. H. & Nygård, J. Tuning Yu-Shiba-Rusinov states in a quantum dot. Phys. Rev. B 94, 064520 (2016).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments