Sau, J. D. & Sarma, S. D. Realizing a robust practical Majorana chain in a quantum-dot-superconductor linear array. Nat. Commun. 3, 964 (2012).
Leijnse, M. & Flensberg, K. Parity qubits and poor man’s Majorana bound states in double quantum dots. Phys. Rev. B 86, 134528 (2012).
Fulga, I. C., Haim, A., Akhmerov, A. R. & Oreg, Y. Adaptive tuning of Majorana fermions in a quantum dot chain. New J. Phys. 15, 045020 (2013).
Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys. Usp. 44, 131 (2001).
Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).
Lutchyn, R. M., Sau, J. D. & Sarma, S. D. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).
Oreg, Y., Refael, G. & Oppen, F.von Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).
Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).
Wen, X.-G. Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 44, 405–473 (1995).
Prada, E. et al. From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nat. Rev. Phys. 2, 575–594 (2020).
Liu, C.-X., Sau, J. D., Stanescu, T. D. & Sarma, S. D. Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks. Phys. Rev. B 96, 075161 (2017).
Reeg, C., Dmytruk, O., Chevallier, D., Loss, D. & Klinovaja, J. Zero-energy Andreev bound states from quantum dots in proximitized Rashba nanowires. Phys. Rev. B 98, 245407 (2018).
Vuik, A., Nijholt, B., Akhmerov, A. R. & Wimmer, M. Reproducing topological properties with quasi-Majorana states. SciPost Phys. 7, 061 (2019).
Pan, H. & Sarma, S. D. Physical mechanisms for zero-bias conductance peaks in Majorana nanowires. Phys. Rev. Res. 2, 013377 (2020).
Sarma, S. D. & Pan, H. Disorder-induced zero-bias peaks in Majorana nanowires. Phys. Rev. B 103, 195158 (2021).
Kouwenhoven, L. Perspective on Majorana bound-states in hybrid superconductor-semiconductor nanowires. Mod. Phys. Lett. B 39, 2540002 (2025).
Li, J. et al. Topological superconductivity induced by ferromagnetic metal chains. Phys. Rev. B 90, 235433 (2014).
Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).
Dvir, T. et al. Realization of a minimal Kitaev chain in coupled quantum dots. Nature 614, 445–450 (2023).
Haaf, S. L. D. et al. A two-site Kitaev chain in a two-dimensional electron gas. Nature 630, 329–334 (2024).
Bordin, A. et al. Enhanced Majorana stability in a three-site Kitaev chain. Nat. Nanotechnol. https://doi.org/10.1038/s41565-025-01894-4 (2025).
Liu, C.-X., Wang, G., Dvir, T. & Wimmer, M. Tunable superconducting coupling of quantum dots via Andreev bound states in semiconductor-superconductor nanowires. Phys. Rev. Lett. 129, 267701 (2022).
Bordin, A. et al. Tunable crossed Andreev reflection and elastic cotunneling in hybrid nanowires. Phys. Rev. X 13, 031031 (2023).
Bordin, A. et al. Crossed andreev reflection and elastic cotunneling in three quantum dots coupled by superconductors. Phys. Rev. Lett. 132, 056602 (2024).
Liu, Z.-H., Zeng, C. & Xu, H. Q. Coupling of quantum-dot states via elastic cotunneling and crossed Andreev reflection in a minimal Kitaev chain. Phys. Rev. B 110, 115302 (2024).
Wang, G. et al. Singlet and triplet Cooper pair splitting in hybrid superconducting nanowires. Nature 612, 448–453 (2022).
Tsintzis, A., Souto, R. S. & Leijnse, M. Creating and detecting poor man’s Majorana bound states in interacting quantum dots. Phys. Rev. B 106, L201404 (2022).
Luethi, M., Legg, H. F., Loss, D. & Klinovaja, J. From perfect to imperfect poor man’s majoranas in minimal kitaev chains. Phys. Rev. B 110, 245412 (2024).
Liu, C.-X. et al. Scaling up a sign-ordered Kitaev chain without magnetic flux control. Phys. Rev. Res. 7, L012045 (2025).
Wang, Q. et al. Triplet correlations in Cooper pair splitters realized in a two-dimensional electron gas. Nat. Commun. 14, 4876 (2023).
Zatelli, F. et al. Robust poor man’s Majorana zero modes using Yu-Shiba-Rusinov states. Nat. Commun. 15, 7933 (2024).
Bozkurt, A. M. et al. Interaction-induced strong zero modes in short quantum dot chains with time-reversal symmetry. Preprint at arxiv.org/abs/2405.14940 (2024).
Liu, C.-X. et al. Enhancing the excitation gap of a quantum-dot-based Kitaev chain. Commun. Phys. 7, 235 (2024).
Pandey, B., Gupta, G. K., Alvarez, G., Okamoto, S. & Dagotto, E. Diabatic error and propagation of Majorana zero modes in interacting quantum dots systems. Preprint at arxiv.org/abs/2501.06288 (2025).
Pandey, B., Okamoto, S. & Dagotto, E. Nontrivial fusion of Majorana zero modes in interacting quantum-dot arrays. Phys. Rev. Res. 6, 033314 (2024).
Pandey, B., Kaushal, N., Alvarez, G. & Dagotto, E. Majorana zero modes in Y-shape interacting Kitaev wires. NPJ Quantum Mater. 8, 51 (2023).
Leumer, N., Marganska, M., Muralidharan, B. & Grifoni, M. Exact eigenvectors and eigenvalues of the finite Kitaev chain and its topological properties. J. Phys. Condens. Matter 32, 445502 (2020).
Ezawa, M. Even-odd effect on robustness of Majorana edge states in short Kitaev chains. Phys. Rev. B 109, L161404 (2024).
Luethi, M., Legg, H. F., Loss, D. & Klinovaja, J. The fate of poor man’s Majoranas in the long Kitaev chain limit. Preprint at arxiv.org/abs/2408.10030 (2025).
Svensson, V. & Leijnse, M. Quantum dot based Kitaev chains: Majorana quality measures and scaling with increasing chain length. Phys. Rev. B 110, 155436 (2024).
Alicea, J., Oreg, Y., Refael, G., Oppen, F. & Fisher, M. P. A. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 7, 412–417 (2011).
Boross, P. & Pályi, A. Braiding-based quantum control of a Majorana qubit built from quantum dots. Phys. Rev. B 109, 125410 (2024).
Tsintzis, A., Souto, R. S., Flensberg, K., Danon, J. & Leijnse, M. Majorana qubits and non-abelian physics in quantum dot–based minimal Kitaev chains. PRX Quantum 5, 010323 (2024).
Liu, C.-X., Pan, H., Setiawan, F., Wimmer, M. & Sau, J. D. Fusion protocol for Majorana modes in coupled quantum dots. Phys. Rev. B 108, 085437 (2023).
Pan, H., Sarma, S. D. & Liu, C.-X. Rabi and Ramsey oscillations of a Majorana qubit in a quantum dot-superconductor array. Phys. Rev. B 111, 075416 (2025).
Moehle, C. M. et al. InSbAs two-dimensional electron gases as a platform for topological superconductivity. Nano Lett. 21, 9990–9996 (2021).
Martinez, E.A. et al. Measurement circuit effects in three-terminal electrical transport measurements. Preprint at arxiv.org/abs/2104.02671 (2021).
Vigneau, F. et al. Probing quantum devices with radio-frequency reflectometry. Appl. Phys. Rev. 10, 021305 (2023).
Kulesh, I. et al. A flux-controlled two-site Kitaev chain. Preprint at arxiv.org/abs/2501.15912 (2025).
Hornibrook, J. M. et al. Frequency multiplexing for readout of spin qubits. Appl. Phys. Lett. 104, 103108 (2014).
Pavešič, L., Aguado, R. & Žitko, R. Strong-coupling theory of quantum-dot Josephson junctions: Role of a residual quasiparticle. Phys. Rev. B 109, 125131 (2024).
Beenakker, C. W. J. Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Phys. Rev. B 44, 1646–1656 (1991).
Haaf, S. L. D. Data and code for “Edge and bulk states in a three-site Kitaev chain”. Zenodo https://doi.org/10.5281/zenodo.15020006 (2025).
Jellinggaard, A., Grove-Rasmussen, K., Madsen, M. H. & Nygård, J. Tuning Yu-Shiba-Rusinov states in a quantum dot. Phys. Rev. B 94, 064520 (2016).