IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).
Myers‐Smith, I. H. & Hik, D. S. Climate warming as a driver of tundra shrubline advance. J. Ecol. 106, 547–560 (2018).
García Criado, M., Myers‐Smith, I. H., Bjorkman, A. D., Lehmann, C. E. R. & Stevens, N. Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Glob. Ecol. Biogeogr. 29, 925–943 (2020).
Wookey, P. A. et al. Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob. Chang. Biol. 15, 1153–1172 (2009).
Hamilton, C. W. et al. Predicting the suitable habitat distribution of berry plants under climate change. Landsc. Ecol. 39, 18 (2024).
IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Díaz, S. et al.) (IPBES Secretariat, 2019).
Antão, L. H. et al. Temperature-related biodiversity change across temperate marine and terrestrial systems. Nat. Ecol. Evol. 4, 927–933 (2020).
Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).
Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).
van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl Acad. Sci. USA 113, 3557–3562 (2016).
Savage, J. & Vellend, M. Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography 38, 546–555 (2015).
Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).
Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).
Freeman, B. G., Song, Y., Feeley, K. J. & Zhu, K. Montane species track rising temperatures better in the tropics than in the temperate zone. Ecol. Lett. 24, 1697–1708 (2021).
Bjorkman, A. D. et al. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio 49, 678–692 (2019).
Valdez, J. W. et al. The undetectability of global biodiversity trends using local species richness. Ecography 2023, e06604 (2023).
Nabe‐Nielsen, J. et al. Plant community composition and species richness in the High Arctic tundra: from the present to the future. Ecol. Evol. 7, 10233–10242 (2017).
Lembrechts, J. J. et al. Microclimate variability in alpine ecosystems as stepping stones for non-native plant establishment above their current elevational limit. Ecography 41, 900–909 (2018).
Niskanen, A. K. J., Niittynen, P., Aalto, J., Väre, H. & Luoto, M. Lost at high latitudes: Arctic and endemic plants under threat as climate warms. Divers. Distrib. 25, 809–821 (2019).
Elmendorf, S. C. & Hollister, R. D. Limits on phenological response to high temperature in the Arctic. Sci. Rep. 13, 208 (2023).
Pajunen, A. M., Oksanen, J. & Virtanen, R. Impact of shrub canopies on understorey vegetation in western Eurasian tundra. J. Veg. Sci. 22, 837–846 (2011).
Boscutti, F. et al. Shrub growth and plant diversity along an elevation gradient: evidence of indirect effects of climate on alpine ecosystems. PLoS ONE 13, e0196653 (2018).
von Humboldt, A. & Bonpland, A. Essay on the Geography of Plants (Univ. Chicago Press, 1807).
Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).
Saupe, E. E. et al. Spatio-temporal climate change contributes to latitudinal diversity gradients. Nat. Ecol. Evol. 3, 1419–1429 (2019).
Post, E., Steinman, B. A. & Mann, M. E. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 8, 3927 (2018).
Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).
Wipf, S., Stöckli, V., Herz, K. & Rixen, C. The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecol. Divers. 6, 447–455 (2013).
Körner, C. Concepts in Alpine plant ecology. Plants 12, 2666 (2023).
Brodie, J. F., Roland, C. A., Stehn, S. E. & Smirnova, E. Variability in the expansion of trees and shrubs in boreal Alaska. Ecology 100, e02660 (2019).
Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta‐analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).
Walker, D. A. et al. The Circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).
McGraw, J. B. et al. Northward displacement of optimal climate conditions for ecotypes of Eriophorum vaginatum L. across a latitudinal gradient in Alaska. Glob. Chang. Biol. 21, 3827–3835 (2015).
Chapin, F. S., Bret‐Harte, M. S., Hobbie, S. E. & Zhong, H. Plant functional types as predictors of transient responses of arctic vegetation to global change. J. Veg. Sci. 7, 347–358 (1996).
Prager, C. M. et al. A mechanism of expansion: Arctic deciduous shrubs capitalize on warming-induced nutrient availability. Oecologia 192, 671–685 (2020).
Walker, M. D. et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl Acad. Sci. USA 103, 1342–1346 (2006).
Hillebrand, H., Bennett, D. M. & Cadotte, M. W. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89, 1510–1520 (2008).
Frishkoff, L. O. et al. Climate change and habitat conversion favour the same species. Ecol. Lett. 19, 1081–1090 (2016).
Blowes, S. A. et al. Synthesis reveals approximately balanced biotic differentiation and homogenization. Sci. Adv. 10, eadj9395 (2024).
Niittynen, P., Heikkinen, R. K. & Luoto, M. Decreasing snow cover alters functional composition and diversity of Arctic tundra. Proc. Natl Acad. Sci. USA 117, 21480–21487 (2020).
Stewart, L., Simonsen, C. E., Svenning, J.-C., Schmidt, N. M. & Pellissier, L. Forecasted homogenization of high Arctic vegetation communities under climate change. J. Biogeogr. 45, 2576–2587 (2018).
Kitagawa, R. et al. Positive interaction facilitates landscape homogenization by shrub expansion in the forest–tundra ecotone. J. Veg. Sci. 31, 234–244 (2020).
van der Kolk, H. J., Heijmans, M., van Huissteden, J., Pullens, J. W. M. & Berendse, F. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw. Biogeosciences 13, 6229–6245 (2016).
Holtmeier, F. & Broll, G. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob. Ecol. Biogeogr. 14, 395–410 (2005).
Lawrence, E. R. & Fraser, D. J. Latitudinal biodiversity gradients at three levels: linking species richness, population richness and genetic diversity. Glob. Ecol. Biogeogr. 29, 770–788 (2020).
Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115 (2012).
Post, E. et al. Large herbivore diversity slows sea ice-associated decline in arctic tundra diversity. Science 380, 1282–1287 (2023).
Trindade, D. P. F., Carmona, C. P. & Pärtel, M. Temporal lags in observed and dark diversity in the Anthropocene. Glob. Chang. Biol. 26, 3193–3201 (2020).
Paquette, A. & Hargreaves, A. L. Biotic interactions are more often important at species’ warm versus cool range edges. Ecol. Lett. 24, 2427–2438 (2021).
Elmendorf, S. C. et al. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proc. Natl Acad. Sci. USA 112, 448–452 (2015).
MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).
Wallace, C. A. & Baltzer, J. L. Tall shrubs mediate abiotic conditions and plant communities at the taiga–tundra ecotone. Ecosystems 23, 828–841 (2020).
Klanderud, K., Vandvik, V. & Goldberg, D. The Importance of biotic vs. abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS ONE 10, e0130205 (2015).
Bråthen, K. A., Pugnaire, F. I. & Bardgett, R. D. The paradox of forbs in grasslands and the legacy of the mammoth steppe. Front. Ecol. Environ. 19, 584–592 (2021).
Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).
Wang, S. & Loreau, M. Biodiversity and ecosystem stability across scales in metacommunities. Ecol. Lett. 19, 510–518 (2016).
Speed, J. D. M. et al. Will borealization of Arctic tundra herbivore communities be driven by climate warming or vegetation change? Glob. Chang. Biol. 27, 6568–6577 (2021).
Van Meerbeek, K., Jucker, T. & Svenning, J.-C. Unifying the concepts of stability and resilience in ecology. J. Ecol. 109, 3114–3132 (2021).
Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).
Ke, P.-J. & Letten, A. D. Coexistence theory and the frequency-dependence of priority effects. Nat. Ecol. Evol. 2, 1691–1695 (2018).
Scharn, R. et al. Decreased soil moisture due to warming drives phylogenetic diversity and community transitions in the tundra. Environ. Res. Lett. 16, 064031 (2021).
Graae, B. J. et al. Stay or go – how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 30, 41–50 (2018).
Lett, S. et al. Can bryophyte groups increase functional resolution in tundra ecosystems?. Arctic Sci. 8, 609–637 (2021).
Soudzilovskaia, N. A. et al. How do bryophytes govern generative recruitment of vascular plants? New Phytol. 190, 1019–1031 (2011).
Mallen-Cooper, M., Graae, B. J. & Cornwell, W. K. Lichens buffer tundra microclimate more than the expanding shrub Betula nana. Ann. Bot. 128, 407–418 (2021).
Forbes, B. C. The importance of bryophytes in the classification of human-disturbed high arctic vegetation. J. Veg. Sci. 5, 877–884 (1994).
Forbes, B. C. Tundra disturbance studies, III: short-term effects of aeolian sand and dust, Yamal region, northwest Siberia. Environ. Conserv. 22, 335–344 (1995).
Vihtakari, M. ggOceanMaps: Plot Data on Oceanographic Maps using ‘ggplot2’. R version 1.4 https://cran.r-project.org/web/packages/ggOceanMaps/index.html (2024).
Henry, G. H. R. et al. The International Tundra Experiment (ITEX): 30 years of research on tundra ecosystems. Arctic Sci. 8, 550–571 (2022).
Prevéy, J. S. et al. Warming shortens flowering seasons of tundra plant communities. Nat. Ecol. Evol. 3, 45–52 (2019).
Ray, N. & Adams, J. A GIS-based vegetation map of the world at the Last Glacial Maximum (25,000–15,000 BP). Internet Archaeol. https://doi.org/10.11141/ia.11.2 (2001).
Abbott, R. J. & Brochmann, C. History and evolution of the arctic flora: in the footsteps of Eric Hultén. Mol. Ecol. 12, 299–313 (2003).
Zhang, J. et al. Evolutionary history of the Arctic flora. Nat. Commun. 14, 4021 (2023).
Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9, 215–227 (2006).
Vellend, M. The Theory of Ecological Communities (MPB-57) (Princeton Univ. Press, 2016).
Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, 1995).
Otýpková, Z. & Chytrý, M. Effects of Plot Size and Heterogeneity of Vegetation Data Sets on Assessment of Evenness and β-Diversity. PhD thesis, Masaryk University (2006).
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
van der Wal, R. & Stien, A. High-arctic plants like it hot: a long-term investigation of between-year variability in plant biomass. Ecology 95, 3414–3427 (2014).
Rayback, S. A. & Henry, G. H. R. Dendrochronological potential of the Arctic dwarf-shrub Cassiope tetragona. Tree Ring Res. 61, 43–53 (2005).
Weijers, S., Broekman, R. & Rozema, J. Dendrochronology in the High Arctic: July air temperatures reconstructed from annual shoot length growth of the circumarctic dwarf shrub Cassiope tetragona. Quat. Sci. Rev. 29, 3831–3842 (2010).
Maria, B. & Udo, S. Why input matters: selection of climate data sets for modelling the potential distribution of a treeline species in the Himalayan region. Ecol. Modell. 359, 92–102 (2017).
Datta, A., Schweiger, O. & Kühn, I. Origin of climatic data can determine the transferability of species distribution models. NeoBiota 59, 61–76 (2020).
Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).
Baselga, A. & Orme, C. D. L. betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).
R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2021).
Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).
García Criado, M. et al. Plant traits poorly predict winner and loser shrub species in a warming tundra biome. Nat. Commun. 14, 3837 (2023).
Naegeli, K. et al. ESA Snow Climate Change Initiative (Snow_cci): Daily global Snow Cover Fraction – snow on ground (SCFG) from AVHRR (1982–2018), v.2.0. NERC EDS Centre for Environmental Data Analysis https://doi.org/10.5285/3f034f4a08854eb59d58e1fa92d207b6 (2022).
Rantanen, M. et al. Bioclimatic atlas of the terrestrial Arctic. Sci. Data 10, 40 (2023).
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7 https://CRAN.R-project.org/package=vegan (2020).
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).
Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).
García Criado, M. marianagarciacriado/ArcticPlantDynamics: v.1. Zenodo https://doi.org/10.5281/zenodo.14884498 (2025).
Rantanen, M. et al. ARCLIM: bioclimatic indices for the terrestrial Arctic. Figshare https://doi.org/10.6084/m9.figshare.c.6216368.v2 (2023).