Thursday, May 1, 2025
No menu items!
HomeNaturePlant diversity dynamics over space and time in a warming Arctic

Plant diversity dynamics over space and time in a warming Arctic

  • IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Myers‐Smith, I. H. & Hik, D. S. Climate warming as a driver of tundra shrubline advance. J. Ecol. 106, 547–560 (2018).

    Article 

    Google Scholar
     

  • García Criado, M., Myers‐Smith, I. H., Bjorkman, A. D., Lehmann, C. E. R. & Stevens, N. Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Glob. Ecol. Biogeogr. 29, 925–943 (2020).

    Article 

    Google Scholar
     

  • Wookey, P. A. et al. Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob. Chang. Biol. 15, 1153–1172 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Hamilton, C. W. et al. Predicting the suitable habitat distribution of berry plants under climate change. Landsc. Ecol. 39, 18 (2024).

    Article 

    Google Scholar
     

  • IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Díaz, S. et al.) (IPBES Secretariat, 2019).

  • Antão, L. H. et al. Temperature-related biodiversity change across temperate marine and terrestrial systems. Nat. Ecol. Evol. 4, 927–933 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl Acad. Sci. USA 113, 3557–3562 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savage, J. & Vellend, M. Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography 38, 546–555 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Freeman, B. G., Song, Y., Feeley, K. J. & Zhu, K. Montane species track rising temperatures better in the tropics than in the temperate zone. Ecol. Lett. 24, 1697–1708 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Bjorkman, A. D. et al. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio 49, 678–692 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valdez, J. W. et al. The undetectability of global biodiversity trends using local species richness. Ecography 2023, e06604 (2023).

    Article 

    Google Scholar
     

  • Nabe‐Nielsen, J. et al. Plant community composition and species richness in the High Arctic tundra: from the present to the future. Ecol. Evol. 7, 10233–10242 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lembrechts, J. J. et al. Microclimate variability in alpine ecosystems as stepping stones for non-native plant establishment above their current elevational limit. Ecography 41, 900–909 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Niskanen, A. K. J., Niittynen, P., Aalto, J., Väre, H. & Luoto, M. Lost at high latitudes: Arctic and endemic plants under threat as climate warms. Divers. Distrib. 25, 809–821 (2019).

    Article 

    Google Scholar
     

  • Elmendorf, S. C. & Hollister, R. D. Limits on phenological response to high temperature in the Arctic. Sci. Rep. 13, 208 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pajunen, A. M., Oksanen, J. & Virtanen, R. Impact of shrub canopies on understorey vegetation in western Eurasian tundra. J. Veg. Sci. 22, 837–846 (2011).

    Article 

    Google Scholar
     

  • Boscutti, F. et al. Shrub growth and plant diversity along an elevation gradient: evidence of indirect effects of climate on alpine ecosystems. PLoS ONE 13, e0196653 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • von Humboldt, A. & Bonpland, A. Essay on the Geography of Plants (Univ. Chicago Press, 1807).

  • Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Saupe, E. E. et al. Spatio-temporal climate change contributes to latitudinal diversity gradients. Nat. Ecol. Evol. 3, 1419–1429 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Post, E., Steinman, B. A. & Mann, M. E. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 8, 3927 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wipf, S., Stöckli, V., Herz, K. & Rixen, C. The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecol. Divers. 6, 447–455 (2013).

    Article 

    Google Scholar
     

  • Körner, C. Concepts in Alpine plant ecology. Plants 12, 2666 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brodie, J. F., Roland, C. A., Stehn, S. E. & Smirnova, E. Variability in the expansion of trees and shrubs in boreal Alaska. Ecology 100, e02660 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta‐analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Walker, D. A. et al. The Circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).

    Article 

    Google Scholar
     

  • McGraw, J. B. et al. Northward displacement of optimal climate conditions for ecotypes of Eriophorum vaginatum L. across a latitudinal gradient in Alaska. Glob. Chang. Biol. 21, 3827–3835 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chapin, F. S., Bret‐Harte, M. S., Hobbie, S. E. & Zhong, H. Plant functional types as predictors of transient responses of arctic vegetation to global change. J. Veg. Sci. 7, 347–358 (1996).

    Article 

    Google Scholar
     

  • Prager, C. M. et al. A mechanism of expansion: Arctic deciduous shrubs capitalize on warming-induced nutrient availability. Oecologia 192, 671–685 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Walker, M. D. et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl Acad. Sci. USA 103, 1342–1346 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hillebrand, H., Bennett, D. M. & Cadotte, M. W. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89, 1510–1520 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Frishkoff, L. O. et al. Climate change and habitat conversion favour the same species. Ecol. Lett. 19, 1081–1090 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Blowes, S. A. et al. Synthesis reveals approximately balanced biotic differentiation and homogenization. Sci. Adv. 10, eadj9395 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niittynen, P., Heikkinen, R. K. & Luoto, M. Decreasing snow cover alters functional composition and diversity of Arctic tundra. Proc. Natl Acad. Sci. USA 117, 21480–21487 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stewart, L., Simonsen, C. E., Svenning, J.-C., Schmidt, N. M. & Pellissier, L. Forecasted homogenization of high Arctic vegetation communities under climate change. J. Biogeogr. 45, 2576–2587 (2018).

    Article 

    Google Scholar
     

  • Kitagawa, R. et al. Positive interaction facilitates landscape homogenization by shrub expansion in the forest–tundra ecotone. J. Veg. Sci. 31, 234–244 (2020).

    Article 

    Google Scholar
     

  • van der Kolk, H. J., Heijmans, M., van Huissteden, J., Pullens, J. W. M. & Berendse, F. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw. Biogeosciences 13, 6229–6245 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Holtmeier, F. & Broll, G. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob. Ecol. Biogeogr. 14, 395–410 (2005).

    Article 

    Google Scholar
     

  • Lawrence, E. R. & Fraser, D. J. Latitudinal biodiversity gradients at three levels: linking species richness, population richness and genetic diversity. Glob. Ecol. Biogeogr. 29, 770–788 (2020).

    Article 

    Google Scholar
     

  • Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Post, E. et al. Large herbivore diversity slows sea ice-associated decline in arctic tundra diversity. Science 380, 1282–1287 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Trindade, D. P. F., Carmona, C. P. & Pärtel, M. Temporal lags in observed and dark diversity in the Anthropocene. Glob. Chang. Biol. 26, 3193–3201 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Paquette, A. & Hargreaves, A. L. Biotic interactions are more often important at species’ warm versus cool range edges. Ecol. Lett. 24, 2427–2438 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Elmendorf, S. C. et al. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proc. Natl Acad. Sci. USA 112, 448–452 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

  • Wallace, C. A. & Baltzer, J. L. Tall shrubs mediate abiotic conditions and plant communities at the taiga–tundra ecotone. Ecosystems 23, 828–841 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Klanderud, K., Vandvik, V. & Goldberg, D. The Importance of biotic vs. abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS ONE 10, e0130205 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bråthen, K. A., Pugnaire, F. I. & Bardgett, R. D. The paradox of forbs in grasslands and the legacy of the mammoth steppe. Front. Ecol. Environ. 19, 584–592 (2021).

    Article 

    Google Scholar
     

  • Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. & Loreau, M. Biodiversity and ecosystem stability across scales in metacommunities. Ecol. Lett. 19, 510–518 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Speed, J. D. M. et al. Will borealization of Arctic tundra herbivore communities be driven by climate warming or vegetation change? Glob. Chang. Biol. 27, 6568–6577 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Van Meerbeek, K., Jucker, T. & Svenning, J.-C. Unifying the concepts of stability and resilience in ecology. J. Ecol. 109, 3114–3132 (2021).

    Article 

    Google Scholar
     

  • Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ke, P.-J. & Letten, A. D. Coexistence theory and the frequency-dependence of priority effects. Nat. Ecol. Evol. 2, 1691–1695 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Scharn, R. et al. Decreased soil moisture due to warming drives phylogenetic diversity and community transitions in the tundra. Environ. Res. Lett. 16, 064031 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Graae, B. J. et al. Stay or go – how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 30, 41–50 (2018).

    Article 

    Google Scholar
     

  • Lett, S. et al. Can bryophyte groups increase functional resolution in tundra ecosystems?. Arctic Sci. 8, 609–637 (2021).

    Article 

    Google Scholar
     

  • Soudzilovskaia, N. A. et al. How do bryophytes govern generative recruitment of vascular plants? New Phytol. 190, 1019–1031 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Mallen-Cooper, M., Graae, B. J. & Cornwell, W. K. Lichens buffer tundra microclimate more than the expanding shrub Betula nana. Ann. Bot. 128, 407–418 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forbes, B. C. The importance of bryophytes in the classification of human-disturbed high arctic vegetation. J. Veg. Sci. 5, 877–884 (1994).

    Article 

    Google Scholar
     

  • Forbes, B. C. Tundra disturbance studies, III: short-term effects of aeolian sand and dust, Yamal region, northwest Siberia. Environ. Conserv. 22, 335–344 (1995).

    Article 

    Google Scholar
     

  • Vihtakari, M. ggOceanMaps: Plot Data on Oceanographic Maps using ‘ggplot2’. R version 1.4 https://cran.r-project.org/web/packages/ggOceanMaps/index.html (2024).

  • Henry, G. H. R. et al. The International Tundra Experiment (ITEX): 30 years of research on tundra ecosystems. Arctic Sci. 8, 550–571 (2022).

    Article 

    Google Scholar
     

  • Prevéy, J. S. et al. Warming shortens flowering seasons of tundra plant communities. Nat. Ecol. Evol. 3, 45–52 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ray, N. & Adams, J. A GIS-based vegetation map of the world at the Last Glacial Maximum (25,000–15,000 BP). Internet Archaeol. https://doi.org/10.11141/ia.11.2 (2001).

    Article 

    Google Scholar
     

  • Abbott, R. J. & Brochmann, C. History and evolution of the arctic flora: in the footsteps of Eric Hultén. Mol. Ecol. 12, 299–313 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Evolutionary history of the Arctic flora. Nat. Commun. 14, 4021 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9, 215–227 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Vellend, M. The Theory of Ecological Communities (MPB-57) (Princeton Univ. Press, 2016).

  • Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, 1995).

  • Otýpková, Z. & Chytrý, M. Effects of Plot Size and Heterogeneity of Vegetation Data Sets on Assessment of Evenness and β-Diversity. PhD thesis, Masaryk University (2006).

  • Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Wal, R. & Stien, A. High-arctic plants like it hot: a long-term investigation of between-year variability in plant biomass. Ecology 95, 3414–3427 (2014).

    Article 

    Google Scholar
     

  • Rayback, S. A. & Henry, G. H. R. Dendrochronological potential of the Arctic dwarf-shrub Cassiope tetragona. Tree Ring Res. 61, 43–53 (2005).

    Article 

    Google Scholar
     

  • Weijers, S., Broekman, R. & Rozema, J. Dendrochronology in the High Arctic: July air temperatures reconstructed from annual shoot length growth of the circumarctic dwarf shrub Cassiope tetragona. Quat. Sci. Rev. 29, 3831–3842 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Maria, B. & Udo, S. Why input matters: selection of climate data sets for modelling the potential distribution of a treeline species in the Himalayan region. Ecol. Modell. 359, 92–102 (2017).

    Article 

    Google Scholar
     

  • Datta, A., Schweiger, O. & Kühn, I. Origin of climatic data can determine the transferability of species distribution models. NeoBiota 59, 61–76 (2020).

    Article 

    Google Scholar
     

  • Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).

    Article 

    Google Scholar
     

  • Baselga, A. & Orme, C. D. L. betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).

    Article 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2021).

  • Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article 

    Google Scholar
     

  • Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).

    Article 
    ADS 

    Google Scholar
     

  • García Criado, M. et al. Plant traits poorly predict winner and loser shrub species in a warming tundra biome. Nat. Commun. 14, 3837 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naegeli, K. et al. ESA Snow Climate Change Initiative (Snow_cci): Daily global Snow Cover Fraction – snow on ground (SCFG) from AVHRR (1982–2018), v.2.0. NERC EDS Centre for Environmental Data Analysis https://doi.org/10.5285/3f034f4a08854eb59d58e1fa92d207b6 (2022).

  • Rantanen, M. et al. Bioclimatic atlas of the terrestrial Arctic. Sci. Data 10, 40 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7 https://CRAN.R-project.org/package=vegan (2020).

  • Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • García Criado, M. marianagarciacriado/ArcticPlantDynamics: v.1. Zenodo https://doi.org/10.5281/zenodo.14884498 (2025).

  • Rantanen, M. et al. ARCLIM: bioclimatic indices for the terrestrial Arctic. Figshare https://doi.org/10.6084/m9.figshare.c.6216368.v2 (2023).

  • RELATED ARTICLES

    Most Popular

    Recent Comments