McEvoy, M. A. & Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).
Mirkhalaf, M. & Rafsanjani, A. Harnessing machine mechanisms to continuously reprogram metamaterials. Matter 6, 3719–3731 (2023).
Frenzel, T., Kadic, M. & Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072–1074 (2017).
Yasuda, H. et al. Origami-based impact mitigation via rarefaction solitary wave creation. Sci. Adv. 5, eaau2835 (2019).
Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).
Banerjee, D., Souslov, A., Abanov, A. G. & Vitelli, V. Odd viscosity in chiral active fluids. Nat. Commun. 8, 1573 (2017).
Fleck, N. A., Deshpande, V. S. & Ashby, M. F. Micro-architectured materials: past, present and future. Proc. R. Soc. A Math. Phys. Eng. Sci. 466, 2495–2516 (2010).
Deshpande, V. S., Fleck, N. A. & Ashby, M. F. Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49, 1747–1769 (2001).
Berger, J., Wadley, H. G. N. & McMeeking, R. M. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 543, 533–537 (2017).
Deshpande, V. S., Ashby, M. F. & Fleck, N. A. Foam topology: bending versus stretching dominated architectures. Acta Materialia 49, 1035–1040 (2001).
Gibson, L. J. & Ashby, M. F. Cellular Solids: Structure and Properties 2nd edn (Cambridge Univ. Press, 1999).
Jiao, P., Mueller, J., Raney, J. R., Zheng, X. & Alavi, A. H. Mechanical metamaterials and beyond. Nat. Commun.14, 6004 (2023).
Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).
Portela, C. M. et al. Supersonic impact resilience of nanoarchitected carbon. Nat. Mater. 20, 1491–1497 (2021).
Shaikeea, A. J. D., Cui, H., O’Masta, M., Zheng, X. R. & Deshpande, V. S. The toughness of mechanical metamaterials. Nat. Mater. 21, 297–304 (2022).
Hatch, H. W., Stillinger, F. H. & Debenedetti, P. G. Chiral symmetry breaking in a microscopic model with asymmetric autocatalysis and inhibition. J. Chem. Phys. 133, 224502 (2010).
Feng, H. et al. Helical structures with switchable and hierarchical chirality. Appl. Phys. Lett. 116, 194102 (2020).
Frenzel, T. et al. Large characteristic lengths in 3D chiral elastic metamaterials. Commun. Mater. 2, 4 (2021).
Choi, G. P. T., Dudte, L. H. & Mahadevan, L. Programming shape using kirigami tessellations. Nat. Mater. 18, 999–1004 (2019).
Misseroni, D. et al. Origami engineering. Nat. Rev. Methods Primers 4, 40 (2024).
Blees, M. K. et al. Graphene kirigami. Nature 524, 204–207 (2015).
Schroeder, T. B. H. et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 552, 214–218 (2017).
Bertoldi, K., Vitelli, V., Christensen, J. & van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017).
Cui, J. et al. Nanomagnetic encoding of shape-morphing micromachines. Nature 575, 164–168 (2019).
Overvelde, J. T. B., Weaver, J. C., Hoberman, C. & Bertoldi, K. Rational design of reconfigurable prismatic architected materials. Nature 541, 347–352 (2017).
Hu, Z. et al. Engineering zero modes in transformable mechanical metamaterials. Nat. Commun. 14, 1266 (2023).
Melancon, D., Gorissen, B., García-Mora, C. J., Hoberman, C. & Bertoldi, K. Multistable inflatable origami structures at the metre scale. Nature 592, 545–550 (2021).
Overvelde, J. T. B. et al. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom. Nat. Commun. 7, 10929 (2016).
Li, Y. et al. Adaptive hierarchical origami-based metastructures. Nat. Commun. 15, 6247 (2024).
Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018).
Kim, Y. & Zhao, X. Magnetic soft materials and robots. Chem. Rev. 122, 5317–5364 (2022).
Xia, X., Spadaccini, C. M. & Greer, J. R. Responsive materials architected in space and time. Nat. Rev. Mater. 7, 683–701 (2022).
Jenett, B. et al. Discretely assembled mechanical metamaterials. Sci. Adv. 6, eabc9943 (2020).
Chen, T., Pauly, M. & Reis, P. M. A reprogrammable mechanical metamaterial with stable memory. Nature 589, 386–390 (2021).
Zhang, Y., Velay-Lizancos, M., Restrepo, D., Mankame, N. D. & Zavattieri, P. D. Architected material analogs for shape memory alloys. Matter 4, 1990–2012 (2021).
Liu, K., Pratapa, P. P., Misseroni, D., Tachi, T. & Paulino, G. H. Triclinic metamaterials by tristable origami with reprogrammable frustration. Adv. Mater. 34, 2107998 (2022).
Schenk, M. & Guest, S. D. Geometry of miura-folded metamaterials. Proc. Natl Acad. Sci. USA 110, 3276–3281 (2013).
Liu, K. & Paulino, G. H. Nonlinear mechanics of non-rigid origami: an efficient computational approach. Proc. R. Soc. A Math. Phys. Eng. Sci. 473, 20170348 (2017).
Rafsanjani, A., Bertoldi, K. & Studart, A. R. Programming soft robots with flexible mechanical metamaterials. Sci. Robot. 4, eaav7874 (2019).
Cui, H. et al. Design and printing of proprioceptive three-dimensional architected robotic metamaterials. Science 376, 1287–1293 (2022).
Yoder, Z., Rumley, E. H., Schmidt, I., Rothemund, P. & Keplinger, C. Hexagonal electrohydraulic modules for rapidly reconfigurable high-speed robots. Sci. Robot. 9, eadl3546 (2024).
Baines, R., Fish, F., Bongard, J. & Kramer-Bottiglio, R. Robots that evolve on demand. Nat. Rev. Mater. 9, 822–835 (2024).
Yin, X., Yang, R., Tan, G. & Fan, S. Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source. Science 370, 786–791 (2020).
Mandal, J. et al. Scalable, “dip-and-dry” fabrication of a wide-angle plasmonic selective absorber for high-efficiency solar-thermal energy conversion. Adv. Mater. 29, 1702156 (2017).
Mandal, J. et al. Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule 3, 3088–3099 (2019).
Visintin, A. Differential Models of Hysteresis (Springer, 2013).
Preisach, F. Über die magnetische nachwirkung. Z. Phys. 94, 277–302 (1935).
Yasuda, H. et al. Mechanical computing. Nature 598, 39–48 (2021).
Mungan, M. Putting memories on paper. Proc. Natl Acad. Sci. USA 119, e2208743119 (2022).
Liu, J. et al. Controlled pathways and sequential information processing in serially coupled mechanical hysterons. Proc. Natl Acad. Sci. USA 121, e2308414121 (2024).
Kresling, B. Natural twist buckling in shells: from the Hawkmoth’s bellows to the deployable Kresling-pattern and cylindrical Miura-ori (2008). In Proc. 6th International Conference on Computation of Shell and Spatial Structures IASS-IACM: “Spanning Nano to Mega” (eds Abel, J.F. & Cooke, J. R.) 18–21 (Cornell Univ. Press, 2008).
Yasuda, H., Tachi, T., Lee, M. & Yang, J. Origami-based tunable truss structures for non-volatile mechanical memory operation. Nat. Commun. 8, 962 (2017).
Zhai, Z., Wang, Y. & Jiang, H. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness. Proc. Natl Acad. Sci. USA 115, 2032–2037 (2018).
Lang, R. J. Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami (CRC Press, 2017).
Qi, H., Joyce, K. & Boyce, M. Durometer hardness and the stress-strain behavior of elastomeric materials. Rubber Chem. Technol. 76, 419–435 (2003).
Paulino, G. H. et al. Super-modular chiral origami metamaterials. Zenodo https://doi.org/10.5281/zenodo.14676200 (2025).
Zang, S., Misseroni, D., Zhao, T. & Paulino, G. H. Kresling origami mechanics explained: experiments and theory. J. Mech. Phys. Solids 188, 105630 (2024).