Thursday, April 24, 2025
No menu items!
HomeNatureAtomic lift-off of epitaxial membranes for cooling-free infrared detection

Atomic lift-off of epitaxial membranes for cooling-free infrared detection

  • Meng, Y. et al. Photonic van der Waals integration from 2D materials to 3D nanomembranes. Nat. Rev. Mater. 8, 498–517 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ji, J., Park, S., Do, H. & Kum, H. S. A review on recent advances in fabricating freestanding single-crystalline complex-oxide membranes and its applications. Phys. Scr. 98, 052002 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lu, D. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fraden, J. in Handbook of Modern Sensors: Physics, Designs, and Applications, 525–567 (Springer, 2016).

  • Shi, Q. et al. The role of lattice dynamics in ferroelectric switching. Nat. Commun. 13, 1110 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brewer, A. et al. Microscopic piezoelectric behavior of clamped and membrane (001) PMN-30PT thin films. Appl. Phys. Lett. 119, 202903 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pesquera, D. et al. Large magnetoelectric coupling in multiferroic oxide heterostructures assembled via epitaxial lift-off. Nat. Commun. 11, 3190 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, S. et al. High energy density in artificial heterostructures through relaxation time modulation. Science 384, 312–317 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pesquera, D., Fernández, A., Khestanova, E. & Martin, L. W. Freestanding complex-oxide membranes. J. Phys. Condens. Matter 34, 383001 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, J.-K. et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhan, R. K. & Dhar, V. Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization. Opto-Electron. Rev. 27, 174–193 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Rogalski, A. W., Kopytko, M. E. & Martyniuk, P. M. Antimonide-Based Infrared Detectors: A New Perspective (SPIE Press, 2018).

  • Kum, H. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2, 439–450 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chiabrera, F. M. et al. Freestanding perovskite oxide films: Synthesis, challenges, and properties. Ann. Phys. 534, 2200084 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Super-tetragonal Sr4Al2O7 as a sacrificial layer for high-integrity freestanding oxide membranes. Science 383, 388–394 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Varshney, S. et al. Hybrid molecular beam epitaxy for single-crystalline oxide membranes with binary oxide sacrificial layers. ACS Nano 18, 6348–6358 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, J. et al. Giant pyroelectricity in nanomembranes. Nature 607, 480–485 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nix, W. D. Mechanical properties of thin films. Metall. Trans. A 20, 2217–2245 (1989).

    Article 

    Google Scholar
     

  • Liu, D. & Pons, D. J. Crack propagation mechanisms for creep fatigue: A consolidated explanation of fundamental behaviours from initiation to failure. Metals 8, 623 (2018).

    Article 

    Google Scholar
     

  • Suo, Z. & Hutchinson, J. W. Steady-state cracking in brittle substrates beneath adherent films. Int. J. Solids Struct. 25, 1337–1353 (1989).

    Article 

    Google Scholar
     

  • Coll, P. G., Meier, R. & Bertoni, M. Dynamics of crack propagation during silicon spalling. In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC), 2537–2539 (IEEE, 2018).

  • Park, H. et al. Analytic model of spalling technique for thickness-controlled separation of single-crystalline semiconductor layers. Solid-State Electron. 163, 107660 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Park, H. et al. Investigation of electrical characteristics of flexible CMOS devices fabricated with thickness-controlled spalling process. Solid-State Electron. 173, 107901 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Controlled spalling and flexible integration of PZT film based on LaNiO3 buffer layer. Ceram. Int. 45, 6373–6379 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wen, J. et al. Advances in far-infrared research: therapeutic mechanisms of disease and application in cancer detection. Lasers Med. Sci. 39, 41 (2024).

  • Tang, Y. & Luo, H. Investigation of the electrical properties of (1 − x)Pb(Mg1/3Nb2/3)O3xPbTiO3 single crystals with special reference to pyroelectric detection. J. Phys. D Appl. Phys. 42, 075406 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Lubomirsky, I. & Stafsudd, O. Invited review article: practical guide for pyroelectric measurements. Rev. Sci. Instrum. 83, 051101 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Karthik, R. et al. Highly sensitive pyroelectric detector using atomically thin nanoscale silicon ditelluride. ACS Appl. Nano Mater. 6, 10168–10177 (2023).

    Article 

    Google Scholar
     

  • Niu, L. et al. Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes. Nano Energy 58, 596–603 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Neumann, N., Kaiser, A. & Mutschall, D. Advantages and limitation of Mn doped PIN–PMN–PT single crystals in pyroelectric detectors. APL Mater. 9, 021106 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Felix, P., Gamot, P., Lacheau, P. & Raverdy, Y. Pyroelectric, dielectric and thermal properties of TGS, DTGS and TGFB. Ferroelectrics 17, 543–551 (1977).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, J. et al. Surface and thickness effect on the ferroelectric, dielectric and pyroelectric properties of Mn-doped Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 single crystals. J. Alloys Compd. 816, 152500 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Glass, A. M. Investigation of the electrical properties of Sr1−xBaxNb2O6 with special reference to pyroelectric detection. J. Appl. Phys. 40, 4699–4713 (1969).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shen, M. et al. High room-temperature pyroelectric property in lead-free BNT-BZT ferroelectric ceramics for thermal energy harvesting. J. Eur. Ceram. Soc. 39, 1810–1818 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Leppävuori, S., Łoziński, A. & Uusimaki, A. A thick-film pyroelectric PLZT ceramic sensor. Sens. Actuators A Phys. 47, 391–394 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Sengupta, S., Sengupta, L. C., Synowczynski, J. & Rees, D. A. Novel pyroelectric sensor materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1444–1452 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. S. et al. Preparation of (Ba, Sr)TiO3 thin films with high pyroelectric coefficients at ambient temperatures. Jpn J. Appl. Phys. 38, L574–L576 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. & Whatmore, R. Sol-gel PZT and Mn-doped PZT thin films for pyroelectric applications. J. Phys. D Appl. Phys. 34, 2296–2301 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Irzaman, Y. D., Fuad, A., Arifin, P., Budiman, M. & Barmawi, M. Physical and pyroelectric properties of tantalum‐oxide‐doped lead zirconium titanate [Pb0.9950(Zr0.525Ti0.465Ta0.010)O3] thin films and their application for IR sensors. Phys. Status Solidi A 199, 416–424 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Moalla, R. et al. Large anisotropy of ferroelectric and pyroelectric properties in heteroepitaxial oxide layers. Sci. Rep. 8, 4332 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schossig, M., Norkus, V. & Gerlach, G. Dielectric and pyroelectric properties of ultrathin, monocrystalline lithium tantalate. Infrared Phys. Technol. 63, 35–41 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bhatia, B. et al. Pyroelectric current measurements on PbZr0.2Ti0.8O3 epitaxial layers. J. Appl. Phys. 112, 104106 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Chang, D. H. & Yoon, Y. S. Pyroelectric properties of the B-polyvilnylidene fluoride (PVDF) thin film prepared by vacuum deposition with electric field application. Jpn J. Appl. Phys. 41, 7234–7238 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aliane, A. et al. Impact of crystallization on ferro-, piezo- and pyro-electric characteristics in thin film P(VDF–TrFE). Org. Electron. 25, 92–98 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luo, J. et al. High specific detectivity infrared detector using crystal ion slicing transferred LiTaO3 single-crystal thin films. Sens. Actuators A Phys. 300, 111650 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Thorlabs. Mid-IR photovoltaic detectors, HgCdTe (MCT). https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=11319 (2024).

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giannozzi, P. et al. Quantum ESPRESSO toward the exascale. J. Chem. Phys. 152, 154105 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • van Setten, M. J. et al. The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Yang, Y. et al. Range-separated hybrid functional pseudopotentials. Phys. Rev. B 108, 165142 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barone, V. et al. Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases. J. Comput. Chem. 30, 934–939 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments