Meng, Y. et al. Photonic van der Waals integration from 2D materials to 3D nanomembranes. Nat. Rev. Mater. 8, 498–517 (2023).
Ji, J., Park, S., Do, H. & Kum, H. S. A review on recent advances in fabricating freestanding single-crystalline complex-oxide membranes and its applications. Phys. Scr. 98, 052002 (2023).
Lu, D. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).
Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).
Fraden, J. in Handbook of Modern Sensors: Physics, Designs, and Applications, 525–567 (Springer, 2016).
Shi, Q. et al. The role of lattice dynamics in ferroelectric switching. Nat. Commun. 13, 1110 (2022).
Brewer, A. et al. Microscopic piezoelectric behavior of clamped and membrane (001) PMN-30PT thin films. Appl. Phys. Lett. 119, 202903 (2021).
Pesquera, D. et al. Large magnetoelectric coupling in multiferroic oxide heterostructures assembled via epitaxial lift-off. Nat. Commun. 11, 3190 (2020).
Han, S. et al. High energy density in artificial heterostructures through relaxation time modulation. Science 384, 312–317 (2024).
Pesquera, D., Fernández, A., Khestanova, E. & Martin, L. W. Freestanding complex-oxide membranes. J. Phys. Condens. Matter 34, 383001 (2022).
Huang, J.-K. et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).
Bhan, R. K. & Dhar, V. Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization. Opto-Electron. Rev. 27, 174–193 (2019).
Rogalski, A. W., Kopytko, M. E. & Martyniuk, P. M. Antimonide-Based Infrared Detectors: A New Perspective (SPIE Press, 2018).
Kum, H. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2, 439–450 (2019).
Chiabrera, F. M. et al. Freestanding perovskite oxide films: Synthesis, challenges, and properties. Ann. Phys. 534, 2200084 (2022).
Zhang, J. et al. Super-tetragonal Sr4Al2O7 as a sacrificial layer for high-integrity freestanding oxide membranes. Science 383, 388–394 (2024).
Varshney, S. et al. Hybrid molecular beam epitaxy for single-crystalline oxide membranes with binary oxide sacrificial layers. ACS Nano 18, 6348–6358 (2024).
Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).
Jiang, J. et al. Giant pyroelectricity in nanomembranes. Nature 607, 480–485 (2022).
Nix, W. D. Mechanical properties of thin films. Metall. Trans. A 20, 2217–2245 (1989).
Liu, D. & Pons, D. J. Crack propagation mechanisms for creep fatigue: A consolidated explanation of fundamental behaviours from initiation to failure. Metals 8, 623 (2018).
Suo, Z. & Hutchinson, J. W. Steady-state cracking in brittle substrates beneath adherent films. Int. J. Solids Struct. 25, 1337–1353 (1989).
Coll, P. G., Meier, R. & Bertoni, M. Dynamics of crack propagation during silicon spalling. In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC), 2537–2539 (IEEE, 2018).
Park, H. et al. Analytic model of spalling technique for thickness-controlled separation of single-crystalline semiconductor layers. Solid-State Electron. 163, 107660 (2020).
Park, H. et al. Investigation of electrical characteristics of flexible CMOS devices fabricated with thickness-controlled spalling process. Solid-State Electron. 173, 107901 (2020).
Zhang, J. et al. Controlled spalling and flexible integration of PZT film based on LaNiO3 buffer layer. Ceram. Int. 45, 6373–6379 (2019).
Wen, J. et al. Advances in far-infrared research: therapeutic mechanisms of disease and application in cancer detection. Lasers Med. Sci. 39, 41 (2024).
Tang, Y. & Luo, H. Investigation of the electrical properties of (1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 single crystals with special reference to pyroelectric detection. J. Phys. D Appl. Phys. 42, 075406 (2009).
Lubomirsky, I. & Stafsudd, O. Invited review article: practical guide for pyroelectric measurements. Rev. Sci. Instrum. 83, 051101 (2012).
Karthik, R. et al. Highly sensitive pyroelectric detector using atomically thin nanoscale silicon ditelluride. ACS Appl. Nano Mater. 6, 10168–10177 (2023).
Niu, L. et al. Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes. Nano Energy 58, 596–603 (2019).
Neumann, N., Kaiser, A. & Mutschall, D. Advantages and limitation of Mn doped PIN–PMN–PT single crystals in pyroelectric detectors. APL Mater. 9, 021106 (2021).
Felix, P., Gamot, P., Lacheau, P. & Raverdy, Y. Pyroelectric, dielectric and thermal properties of TGS, DTGS and TGFB. Ferroelectrics 17, 543–551 (1977).
Zhao, J. et al. Surface and thickness effect on the ferroelectric, dielectric and pyroelectric properties of Mn-doped Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 single crystals. J. Alloys Compd. 816, 152500 (2020).
Glass, A. M. Investigation of the electrical properties of Sr1−xBaxNb2O6 with special reference to pyroelectric detection. J. Appl. Phys. 40, 4699–4713 (1969).
Shen, M. et al. High room-temperature pyroelectric property in lead-free BNT-BZT ferroelectric ceramics for thermal energy harvesting. J. Eur. Ceram. Soc. 39, 1810–1818 (2019).
Leppävuori, S., Łoziński, A. & Uusimaki, A. A thick-film pyroelectric PLZT ceramic sensor. Sens. Actuators A Phys. 47, 391–394 (1995).
Sengupta, S., Sengupta, L. C., Synowczynski, J. & Rees, D. A. Novel pyroelectric sensor materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1444–1452 (1998).
Lee, J. S. et al. Preparation of (Ba, Sr)TiO3 thin films with high pyroelectric coefficients at ambient temperatures. Jpn J. Appl. Phys. 38, L574–L576 (1999).
Zhang, Q. & Whatmore, R. Sol-gel PZT and Mn-doped PZT thin films for pyroelectric applications. J. Phys. D Appl. Phys. 34, 2296–2301 (2001).
Irzaman, Y. D., Fuad, A., Arifin, P., Budiman, M. & Barmawi, M. Physical and pyroelectric properties of tantalum‐oxide‐doped lead zirconium titanate [Pb0.9950(Zr0.525Ti0.465Ta0.010)O3] thin films and their application for IR sensors. Phys. Status Solidi A 199, 416–424 (2003).
Moalla, R. et al. Large anisotropy of ferroelectric and pyroelectric properties in heteroepitaxial oxide layers. Sci. Rep. 8, 4332 (2018).
Schossig, M., Norkus, V. & Gerlach, G. Dielectric and pyroelectric properties of ultrathin, monocrystalline lithium tantalate. Infrared Phys. Technol. 63, 35–41 (2014).
Bhatia, B. et al. Pyroelectric current measurements on PbZr0.2Ti0.8O3 epitaxial layers. J. Appl. Phys. 112, 104106 (2012).
Chang, D. H. & Yoon, Y. S. Pyroelectric properties of the B-polyvilnylidene fluoride (PVDF) thin film prepared by vacuum deposition with electric field application. Jpn J. Appl. Phys. 41, 7234–7238 (2002).
Aliane, A. et al. Impact of crystallization on ferro-, piezo- and pyro-electric characteristics in thin film P(VDF–TrFE). Org. Electron. 25, 92–98 (2015).
Luo, J. et al. High specific detectivity infrared detector using crystal ion slicing transferred LiTaO3 single-crystal thin films. Sens. Actuators A Phys. 300, 111650 (2019).
Thorlabs. Mid-IR photovoltaic detectors, HgCdTe (MCT). https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=11319 (2024).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).
Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).
Giannozzi, P. et al. Quantum ESPRESSO toward the exascale. J. Chem. Phys. 152, 154105 (2020).
van Setten, M. J. et al. The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).
Yang, Y. et al. Range-separated hybrid functional pseudopotentials. Phys. Rev. B 108, 165142 (2023).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Grimme, S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
Barone, V. et al. Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases. J. Comput. Chem. 30, 934–939 (2009).