Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photon. 16, 95–108 (2022).
Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).
Liu, S. et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity. Optica 6, 128–134 (2019).
Hillbrand, J. et al. Picosecond pulses from a mid-infrared interband cascade laser. Optica 6, 1334–1337 (2019).
Ren, D., Dong, C. & Burghoff, D. Integrated nonlinear photonics in the longwave-infrared: a roadmap. MRS Commun. 13, 942–956 (2023).
Marin-Palomo, P. et al. Comb-based WDM transmission at 10 Tbit/s using a DC-driven quantum-dash mode-locked laser diode. Opt. Express 27, 31110–31129 (2019).
Dausinger, F., Lubatschowski, H. & Lichtner, F. Femtosecond Technology for Technical and Medical Applications (Springer, 2004).
Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).
Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).
Takamoto, M. et al. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photon. 14, 411–415 (2020).
Drake, T. E. et al. Terahertz-rate Kerr-microresonator optical clockwork. Phys. Rev. 9, 031023 (2019).
Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).
Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).
Cundiff, S. T. & Mukamel, S. Optical multidimensional coherent spectroscopy. Phys. Today 66, 44–49 (2013).
Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. 13, 146–157 (2019).
Wang, F., Slivken, S., Wu, D. H., Lu, Q. Y. & Razeghi, M. Continuous wave quantum cascade lasers with 5.6 W output power at room temperature and 41% wall-plug efficiency in cryogenic operation. AIP Adv. 10, 055120 (2020).
Schwarz, B. et al. Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector. ACS Photonics 4, 1225–1231 (2017).
Täschler, P. et al. Femtosecond pulses from a mid-infrared quantum cascade laser. Nat. Photon. 15, 919–924 (2021).
Columbo, L. et al. Unifying frequency combs in active and passive cavities: temporal solitons in externally driven ring lasers. Phys. Rev. Lett. 126, 173903 (2021).
Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209 (1987).
Lugiato, L. A., Oldano, C. & Narducci, L. M. Cooperative frequency locking and stationary spatial structures in lasers. J. Opt. Soc. Am. B 5, 879–888 (1988).
Piccardo, M. et al. Frequency combs induced by phase turbulence. Nature 582, 360–364 (2020).
Singleton, M., Jouy, P., Beck, M. & Faist, J. Evidence of linear chirp in mid-infrared quantum cascade lasers. Optica 5, 948–953 (2018).
Opačak, N. & Schwarz, B. Theory of frequency-modulated combs in lasers with spatial hole burning, dispersion, and Kerr nonlinearity. Phys. Rev. Lett. 123, 243902 (2019).
Burghoff, D. Unraveling the origin of frequency modulated combs using active cavity mean-field theory. Optica 7, 1781–1787 (2020).
Täschler, P. et al. Asynchronous upconversion sampling of frequency modulated combs. Laser Photonics Rev. 17, 2200590 (2023).
Meng, B. et al. Dissipative Kerr solitons in semiconductor ring lasers. Nat. Photon. 16, 142–147 (2021).
Opačak, N. et al. Nozaki–Bekki solitons in semiconductor lasers. Nature 625, 685–690 (2024).
Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).
Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2013).
Henry, C. H. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18, 259–264 (1982).
Opačak, N., Cin, S. D., Hillbrand, J. & Schwarz, B. Frequency comb generation by Bloch gain induced giant Kerr nonlinearity. Phys. Rev. Lett. 127, 093902 (2021).
Opačak, N. et al. Spectrally resolved linewidth enhancement factor of a semiconductor frequency comb. Optica 8, 1227–1230 (2021).
Khurgin, J. B. Nonlinear optics from the viewpoint of interaction time. Nat. Photon. 17, 545–551 (2023).
Shimoda, K. Introduction to Laser Physics (Springer, 1986).
Kazakov, D. et al. Active mid-infrared ring resonators. Nat. Commun. 15, 607 (2024).
Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).
Englebert, N., Mas Arabí, C., Parra-Rivas, P., Gorza, S.-P. & Leo, F. Temporal solitons in a coherently driven active resonator. Nat. Photon. 15, 536–541 (2021).
Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).
Wang, P.-H. et al. Intracavity characterization of micro-comb generation in the single-soliton regime. Opt. Express 24, 10890–10897 (2016).
Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).
Brès, C. S. et al. Supercontinuum in integrated photonics: generation, applications, challenges, and perspectives. Nanophotonics 12, 1199–1244 (2023).
Liu, Y. et al. A photonic integrated circuit-based erbium-doped amplifier. Science 376, 1309–1313 (2022).
Gaafar, M. A. et al. Femtosecond pulse amplification on a chip. Nat. Commun. 15, 8109 (2024).
Xiang, C. et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 620, 78–85 (2023).
Heckelmann, I. et al. Quantum walk comb in a fast gain laser. Science 282, 434–438 (2023).
Jung, S. et al. Homogeneous photonic integration of mid-infrared quantum cascade lasers with low-loss passive waveguides on an InP platform. Optica 6, 1023–1030 (2019).
Wang, R. et al. Monolithic integration of mid-infrared quantum cascade lasers and frequency combs with passive waveguides. ACS Photonics 9, 426–431 (2022).
Dely, H. et al. 10 Gbit s−1 free space data transmission at 9 μm wavelength with unipolar quantum optoelectronics. Laser Photonics Rev. 16, 2100414 (2022).
Villares, G. et al. On-chip dual-comb based on quantum cascade laser frequency combs. Appl. Phys. Lett. 107, 251104 (2015).
Prati, F. et al. Soliton dynamics of ring quantum cascade lasers with injected signal. Nanophotonics 10, 195–207 (2021).
Cox, S. M. & Matthews, P. C. Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002).
Burghoff, D., Ren, D. & Han, Z. Sensitivity of SWIFT spectroscopy. Opt. Express 28, 6002–6017 (2020).