Sunday, April 20, 2025
No menu items!
HomeNatureA sharp volatile-rich cap to the Yellowstone magmatic system

A sharp volatile-rich cap to the Yellowstone magmatic system

  • Edmonds, M. & Woods, A. W. Exsolved volatiles in magma reservoirs. J. Volcanol. Geotherm. Res. 368, 13–30 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blake, S. Volatile oversaturation during the evolution of silicic magma chambers as an eruption trigger. J. Geophys. Res.: Solid Earth 89, 8237–8244 (1984).

    Article 

    Google Scholar
     

  • Huber, C., Townsend, M., Degruyter, W. & Bachmann, O. Optimal depth of subvolcanic magma chamber growth controlled by volatiles and crust rheology. Nat. Geosci. 12, 762–768 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chu, R., Helmberger, D. V., Sun, D., Jackson, J. M. & Zhu, L. Mushy magma beneath Yellowstone. Geophys. Res. Lett. 37, L01306 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Farrell, J., Smith, R. B., Husen, S. & Diehl, T. Tomography from 26 years of seismicity revealing that the spatial extent of the Yellowstone crustal magma reservoir extends well beyond the Yellowstone caldera. Geophys. Res. Lett. 41, 3068–3073 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Maguire, R. et al. Magma accumulation at depths of prior rhyolite storage beneath Yellowstone Caldera. Science 378, 1001–1004 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, S. M., Huang, H. H., Lin, F. C., Farrell, J. & Schmandt, B. Extreme seismic anisotropy indicates shallow accumulation of magmatic sills beneath Yellowstone caldera. Earth Planet. Sci. Lett. 616, 118244 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Parmigiani, A., Faroughi, S., Huber, C., Bachmann, O. & Su, Y. Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust. Nature 532, 492–495 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oppenheimer, J., Rust, A. C., Cashman, K. V. & Sandnes, B. Gas migration regimes and outgassing in particle-rich suspensions. Front. Phys. 3, 60 (2015).

    Article 

    Google Scholar
     

  • Wallace, P. J. Volcanic SO2 emissions and the abundance and distribution of exsolved gas in magma bodies. J. Volcanol. Geotherm. Res. 108, 85–106 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lowenstern, J. B. Dissolved volatile concentrations in an ore-forming magma. Geology 22, 893–896 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chiodini, G. et al. Insights from fumarole gas geochemistry on the origin of hydrothermal fluids on the Yellowstone Plateau. Geochim. Cosmochim. Acta 89, 265–278 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Werner, C. & Brantley, S. CO2 emissions from the Yellowstone volcanic system. Geochem. Geophys. Geosyst. 4, 1061 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Rahilly, K. E. & Fischer, T. P. Total diffuse CO2 flux from Yellowstone caldera incorporating high CO2 emissions from cold degassing sites. J. Volcanol. Geotherm. Res. 419, 107383 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lowenstern, J. B., Bergfeld, D., Evans, W. C. & Hunt, A. G. Origins of geothermal gases at Yellowstone. J. Volcanol. Geotherm. Res. 302, 87–101 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bachmann, O. & Huber, C. Silicic magma reservoirs in the Earth’s crust. Am. Mineral. 101, 2377–2404 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Shinohara, H. Excess degassing from volcanoes and its role on eruptive and intrusive activity. Rev. Geophys. 46, 2007RG000244 (2008).

  • Su, Y. et al. The role of crystallization‐driven exsolution on the sulfur mass balance in volcanic arc magmas. J. Geophys. Res.: Solid Earth 121, 5624–5640 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Husen, S., Smith, R. B. & Waite, G. P. Evidence for gas and magmatic sources beneath the Yellowstone volcanic field from seismic tomographic imaging. J. Volcanol. Geotherm. Res. 131, 397–410 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luttrell, K., Mencin, D., Francis, O. & Hurwitz, S. Constraints on the upper crustal magma reservoir beneath Yellowstone Caldera inferred from lake‐seiche induced strain observations. Geophys. Res. Lett. 40, 501–506 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Chang, W. L., Smith, R. B., Farrell, J. & Puskas, C. M. An extraordinary episode of Yellowstone caldera uplift, 2004–2010, from GPS and InSAR observations. Geophys. Res. Lett. 37, L23302 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Delgado, F. & Grandin, R. Dynamics of episodic magma Injection and migration at Yellowstone caldera: revisiting the 2004–2009 episode of caldera uplift with InSAR and GPS data. J. Geophys. Res.: Solid Earth 126, e2021JB022341 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Earle, P. S. & Shearer, P. M. Characterization of global seismograms using an automatic-picking algorithm. Bull. Seismol. Soc. Am. 84, 366–376 (1994).

    Article 

    Google Scholar
     

  • Hansen, S. M. et al. Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens. Nat. Commun. 7, 13242 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duan, C., Lumley, D. & Zhu, H. Estimation of micro-earthquake source locations based on full adjoint P and S wavefield imaging. Geophys. J. Int. 226, 2116–2144 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, C., Schmandt, B., Farrell, J., Lin, F. C. & Ward, K. M. Seismically anisotropic magma reservoirs underlying silicic calderas. Geology 46, 727–730 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Befus, K. S. & Gardner, J. E. Magma storage and evolution of the most recent effusive and explosive eruptions from Yellowstone Caldera. Contrib. Mineral. Petrol. 171, 1–19 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Myers, M. L., Wallace, P. J., Wilson, C. J., Morter, B. K. & Swallow, E. J. Prolonged ascent and episodic venting of discrete magma batches at the onset of the Huckleberry Ridge supereruption, Yellowstone. Earth Planet. Sci. Lett. 451, 285–297 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shamloo, H. I. & Till, C. B. Decadal transition from quiescence to supereruption: petrologic investigation of the Lava Creek Tuff, Yellowstone Caldera, WY. Contrib. Mineral. Petrol. 174, 1–18 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zollo, A. et al. Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys. Res. Lett. 35, L12306 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Singh, S. C., Kent, G. M., Collier, J. S., Harding, A. J. & Orcutt, J. A. Melt to mush variations in crustal magma properties along the ridge crest at the southern East Pacific Rise. Nature 394, 874–878 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ueki, K. & Iwamori, H. Density and seismic velocity of hydrous melts under crustal and upper mantle conditions. Geochem. Geophys. Geosyst. 17, 1799–1814 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Linstrom, P. J. & Mallard, W. G. The NIST Chemistry WebBook: a chemical data resource on the internet. J. Chem. Eng. Data 46, 1059–1063 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Degruyter, W., Parmigiani, A., Huber, C. & Bachmann, O. How do volatiles escape their shallow magmatic hearth? Philos. Trans. R. Soc. A 377, 20180017 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fournier, R. O. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ. Geol. 94, 1193–1211 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Dingwell, D. B. The brittle–ductile transition in high-level granitic magmas: material constraints. J. Petrol. 38, 1635–1644 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hurwitz, S. & Lowenstern, J. B. Dynamics of the Yellowstone hydrothermal system. Rev. Geophys. 52, 375–411 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Caricchi, L., Annen, C., Blundy, J., Simpson, G. & Pinel, V. Frequency and magnitude of volcanic eruptions controlled by magma injection and buoyancy. Nat. Geosci. 7, 126–130 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carn, S. A., Fioletov, V. E., McLinden, C. A., Li, C. & Krotkov, N. A. A decade of global volcanic SO2 emissions measured from space. Sci. Rep. 7, 44095 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer, T. P. et al. The emissions of CO2 and other volatiles from the world’s subaerial volcanoes. Sci. Rep. 9, 18716 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowenstern, J. B. & Hurwitz, S. Monitoring a supervolcano in repose: heat and volatile flux at the Yellowstone Caldera. Elements 4, 35–40 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Allen, R. V. Automatic earthquake recognition and timing from single traces. Bull. Seismol. Soc. Am. 68, 1521–1532 (1978).

    Article 

    Google Scholar
     

  • Kiser, E., Levander, A., Schmandt, B. & Hansen, S. Seismic evidence of bottom‐up crustal control on volcanism and magma storage near Mount St. Helens. Geophys. Res. Lett. 48, e2020GL090612 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Shin, C., Jang, S. & Min, D. J. Improved amplitude preservation for prestack depth migration by inverse scattering theory. Geophys. Prospect. 49, 592–606 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Plessix, R.-E. & Mulder, W. A. Frequency-domain finite-difference amplitude-preserving migration. Geophys. J. Int. 157, 975–987 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, H. Elastic wavefield separation based on the Helmholtz decomposition. Geophysics 82, S173–S183 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Yang, J., Zhu, H., Wang, W., Zhao, Y. & Zhang, H. Isotropic elastic reverse time migration using the phase- and amplitude-corrected vector P- and S-wavefields. Geophysics 83, S489–S503 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Shannon, C. E. Communication in the presence of noise. Proc. IEEE 72, 1192–1201 (1984).

    Article 

    Google Scholar
     

  • Fomel, S. & Liu, Y. Seislet transform and seislet frame. Geophysics 75, V25–V38 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Trad, D. Five-dimensional interpolation: recovering from acquisition constraints. Geophysics 74, V123–V132 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Fichtner, A. & Trampert, J. Hessian kernels of seismic data functionals based upon adjoint techniques. Geophys. J. Int. 185, 775–798 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Efron, B. & Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54–75 (1986).

    MathSciNet 

    Google Scholar
     

  • Girard, G. & Stix, J. Rapid extraction of discrete magma batches from a large differentiating magma chamber: the Central Plateau Member rhyolites, Yellowstone Caldera, Wyoming. Contrib. Mineral. Petrol. 160, 441–465 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mavko, G. & Mukerji, T. Bounds on low-frequency seismic velocities in partially saturated rocks. Geophysics 63, 918–924 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Stelten, M. E., Cooper, K. M., Vazquez, J. A., Calvert, A. T. & Glessner, J. J. Mechanisms and timescales of generating eruptible rhyolitic magmas at Yellowstone caldera from zircon and sanidine geochronology and geochemistry. J. Petrol. 56, 1607–1642 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Loewen, M. W., Bindeman, I. N. & Melnik, O. E. Eruption mechanisms and short duration of large rhyolitic lava flows of Yellowstone. Earth Planet. Sci. Lett. 458, 80–91 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Berryman, J. G. Long‐wavelength propagation in composite elastic media I. Spherical inclusions. J. Acoust. Soc. Am. 68, 1809–1819 (1980).

    Article 
    ADS 

    Google Scholar
     

  • Berryman, J. G. in Rock Physics and Phase Relations: A Handbook of Physical Constants, Vol. 3 (ed. Ahrens, T. J.) 205–228 (American Geophysical Union, 1995).

  • Gassmann, F. Uber die elastizitat poroser medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich 96, 1–23 (1951).

    MathSciNet 

    Google Scholar
     

  • Mavko, G., Mukerji, T. & Dvorkin, J. The Rock Physics Handbook (Cambridge Univ. Press, 2020).

  • Paulatto, M. et al. Advances in seismic imaging of magma and crystal mush. Front. Earth Sci. 10, 970131 (2022).

    Article 

    Google Scholar
     

  • Pratt, R. G. & Shipp, R. M. Seismic waveform inversion in the frequency domain, Part 2: fault delineation in sediments using crosshole data. Geophysics 64, 902–914 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Xiong, K., Lumley, D. & Zhou, W. The importance of data preconditioning strategies for envelope full-waveform inversion methods: demonstration on marine seismic data. Geophysics 89, 415–428 (2024).

    Article 

    Google Scholar
     

  • Span, R. & Wagner, W. A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25, 1509–1596 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments