Monday, April 21, 2025
No menu items!
HomeNatureStructure of the ATP-driven methyl-coenzyme M reductase activation complex

Structure of the ATP-driven methyl-coenzyme M reductase activation complex

  • Jackson, R. B. et al. Human activities now fuel two-thirds of global methane emissions. Environ. Res. Lett. 19, 101002 (2024).

    Article 

    Google Scholar
     

  • Ermler, U., Grabarse, W., Shima, S., Goubeaud, M. & Thauer, R. K. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278, 1457–1462 (1997).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grabarse, W. et al. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding. J. Mol. Biol. 309, 315–330 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans, P. N. et al. An evolving view of methane metabolism in the Archaea. Nat. Rev. Microbiol. 17, 219–232 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scheller, S., Goenrich, M., Boecher, R., Thauer, R. K. & Jaun, B. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465, 606–608 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hahn, C. J. et al. Crystal structure of a key enzyme for anaerobic ethane activation. Science 373, 118–121 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rospert, S., Böcher, R., Albracht, S. P. J. & Thauer, R. K. Methyl-coenzyme M reductase preparations with high specific activity from H2-preincubated cells of Methanobacterium thermoautotrophicum. FEBS Lett. 291, 371–375 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goubeaud, M., Schreiner, G. & Thauer, R. K. Purified methyl‐coenzyme‐M reductase is activated when the enzyme‐bound coenzyme F430 is reduced to the nickel (I) oxidation state by titanium (III) citrate. Eur. J. Biochem. 243, 110–114 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Becker, D. F. & Ragsdale, S. W. Activation of methyl-SCoM reductase to high specific activity after treatment of whole cells with sodium sulfide. Biochemistry 37, 2639–2647 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y., Dorchak, A. E. & Ragsdale, S. W. In vivo activation of methyl-coenzyme M reductase by carbon monoxide. Front. Microbiol. 4, 69 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holliger, C., Pierik, A. J., Reijerse, E. J. & Hagen, W. R. A spectroelectrochemical study of factor F430 nickel (II/I) from methanogenic bacteria in aqueous solution. J. Am. Chem. Soc. 115, 5651–5656 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Chadwick, G. L., Joiner, A. M., Ramesh, S., Mitchell, D. A. & Nayak, D. D. McrD binds asymmetrically to methyl-coenzyme M reductase improving active-site accessibility during assembly. Proc. Natl Acad. Sci. USA 120, e2302815120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, K., Ngo, P. D., Owens, V. L., Yang, X. P. & Mansoorabadi, S. O. The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea. Science 354, 339–342 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Prakash, D., Wu, Y., Suh, S. J. & Duin, E. C. Elucidating the process of activation of methyl-coenzyme M reductase. J. Bacteriol. 196, 2491–2498 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rouvière, P. & Wolfe, R. Component A3 of the methylcoenzyme M methylreductase system of Methanobacterium thermoautotrophicum ΔH: resolution in two components. J. Bacteriol. 179, 4556–4562 (1989).

    Article 

    Google Scholar
     

  • Kuhner, C. H., Lindenbach, B. D. & Wolfe, R. S. Component A2 of methylcoenzyme M reductase system from Methanobacterium thermoautotrophicum ΔH: nucleotide sequence and functional expression by Escherichia coli. J. Bacteriol. 175, 3195–3203 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, N. et al. Expression of divergent methyl/alkyl coenzyme M reductases from uncultured archaea. Commun. Biol. 5, 1113 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaiser, J. T., Hu, Y., Wiig, J. A., Rees, D. C. & Ribbe, M. W. Structure of precursor-bound NifEN: a nitrogenase FeMo cofactor maturase/insertase. Science 331, 91–94 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lancaster, K. M., Hu, Y., Bergmann, U., Ribbe, M. W. & DeBeer, S. X-ray spectroscopic observation of an interstitial carbide in NifEN-bound FeMoco precursor. J. Am. Chem. Soc. 135, 610–612 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao, J., de Dios Mateos, E. & Scheller, S. Efficient CRISPR/Cas12a-based genome-editing toolbox for metabolic engineering in Methanococcus maripaludis. ACS Synth. Biol. 11, 2496–2503 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jarrett, J. T. in Encyclopedia of Biophysics (ed. Roberts, G. C. K.) 1153–1156 (Springer, 2013).

  • Duin, E. C., Prakash, D. & Brungess, C. in Methods in Enzymology, Vol. 494 (eds Rosenzweig, A. & Ragsdale, S. W.) 159–187 (Academic Press, 2011).

  • Rouvière, P. E., Bobik, T. A. & Wolfe, R. S. Reductive activation of the methyl coenzyme M methylreductase system of Methanobacterium thermoautotrophicum ΔH. J. Bacteriol. 170, 3946–3952 (1988).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cedervall, P. E., Dey, M., Pearson, A. R., Ragsdale, S. W. & Wilmot, C. M. Structural insight into methyl-coenzyme M reductase chemistry using coenzyme B analogues. Biochemistry 49, 7683–7693 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wongnate, T. et al. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Science 352, 953–958 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Y. & Ribbe, M. W. Biosynthesis of the metalloclusters of nitrogenases. Annu. Rev. Biochem. 85, 455–483 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jasniewski, A. J., Lee, C. C., Ribbe, M. W. & Hu, Y. Reactivity, mechanism, and assembly of the alternative nitrogenases. Chem. Rev. 120, 5107–5157 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanifuji, K. et al. Tracing the incorporation of the “ninth sulfur” into the nitrogenase cofactor precursor with selenite and tellurite. Nat. Chem. 13, 1228–1234 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spatzal, T. et al. Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334, 940 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutledge, H. L., Cook, B. D., Nguyen, H. P., Herzik, M. A. Jr & Tezcan, F. A. Structures of the nitrogenase complex prepared under catalytic turnover conditions. Science 377, 865–869 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warmack, R. A. et al. Structural consequences of turnover-induced homocitrate loss in nitrogenase. Nat. Commun. 14, 1091 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, F. V. et al. Structural insights into the iron nitrogenase complex. Nat. Struct. Mol. Biol. 31, 150–158 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sippel, D. & Einsle, O. The structure of vanadium nitrogenase reveals an unusual bridging ligand. Nat. Chem. Biol. 13, 956–960 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jenner, L. P., Cherrier, M. V., Amara, P., Rubio, L. M. & Nicolet, Y. An unexpected P-cluster like intermediate en route to the nitrogenase FeMo-co. Chem. Sci. 12, 5269–5274 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stripp, S. T. et al. Second and outer coordination sphere effects in nitrogenase, hydrogenase, formate dehydrogenase, and CO dehydrogenase. Chem. Rev. 122, 11900–11973 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Page, C. C., Moser, C. C., Chen, X. & Dutton, P. L. Natural engineering principles of electron tunnelling in biological oxidation–reduction. Nature 402, 47–52 (1999).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Valer, L. et al. Histidine ligated iron‐sulfur peptides. ChemBioChem 23, e202200202 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Telser, J., Davydov, R., Horng, Y. C., Ragsdale, S. W. & Hoffman, B. M. Cryoreduction of methyl-coenzyme M reductase: EPR characterization of forms, MCRox1 and MCRred1. J. Am. Chem. Soc. 123, 5853–5860 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahlert, F., Bauer, C., Jaun, B., Thauer, R. K. & Duin, E. C. The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: in vitro induction of the nickel-based MCR-ox EPR signals from MCR-red2. J. Biol. Inorg. Chem. 7, 500–513 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rettberg, L. A. et al. Probing the coordination and function of Fe4S4 modules in nitrogenase assembly protein NifB. Nat. Commun. 9, 2824 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lago-Maciel, A. et al. Methylthio-alkane reductases use nitrogenase metalloclusters for carbon-sulfur bond cleavage. Preprint at bioRxiv https://doi.org/10.1101/2024.10.19.619033 (2024).

  • Hua, Z. S. et al. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea. Nat. Commun. 10, 4574 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mei, R., Kaneko, M., Imachi, H. & Nobu, M. K. The origin and evolution of methanogenesis and Archaea are intertwined. PNAS Nexus 2, pgad023 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia, P. S., Gribaldo, S. & Borrel, G. Diversity and evolution of methane-related pathways in archaea. Annu. Rev. Microbiol. 76, 727–755 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, W. et al. X‐Ray crystallographic analysis of NifB with a full complement of clusters: structural insights into the radical SAM‐dependent carbide insertion during nitrogenase cofactor assembly. Angew. Chem. Int. Ed. 60, 2364–2370 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fay, A. W., Wiig, J. A., Lee, C. C. & Hu, Y. Identification and characterization of functional homologs of nitrogenase cofactor biosynthesis protein NifB from methanogens. Proc. Natl Acad. Sci. USA 112, 14829–14833 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lie, T. J. et al. A genetic study of Nif-associated genes in a hyperthermophilic methanogen. Microbiol. Spectrum 10, e02093-21 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Saini, J., Dhamad, A., Muniyasamy, A., Alverson, A. J. & Lessner, D. J. The nitrogenase cofactor biogenesis enzyme NifB is essential for the viability of methanogens. Preprint at bioRxiv https://doi.org/10.1101/2023.10.20.563283 (2023).

  • Vazquez Ramos, J. et al. Characterization of the iron–sulfur clusters in the nitrogenase‐like reductase CfbC/D required for coenzyme F430 biosynthesis. FEBS J. 291, 3233–3248 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zehnder, A. J. & Wuhrmann, K. Titanium (III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194, 1165–1166 (1976).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dürichen, H., Diekert, G. & Studenik, S. Redox potential changes during ATP‐dependent corrinoid reduction determined by redox titrations with europium (II)–DTPA. Protein Sci. 28, 1902–1908 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buckel, W. & Thauer, R. K. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim. Biophys. Acta Bioenerg. 1827, 94–113 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Amstrup, S. K. et al. Structural remodelling of the carbon–phosphorus lyase machinery by a dual ABC ATPase. Nat. Commun. 14, 1001 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeoung, J. H., Martins, B. M. & Dobbek, H. Double‐cubane [8Fe9S] clusters: a novel nitrogenase‐related cofactor in biology. ChemBioChem 21, 1710–1716 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goenrich, M., Duin, E. C., Mahlert, F. & Thauer, R. K. Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B. J. Biol. Inorg. Chem. 10, 333–342 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebner, S., Jaun, B., Goenrich, M., Thauer, R. K. & Harmer, J. Binding of coenzyme B induces a major conformational change in the active site of methyl-coenzyme M reductase. J. Am. Chem. Soc. 132, 567–575 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harmer, J. et al. Spin density and coenzyme M coordination geometry of the ox1 form of methyl-coenzyme M reductase: a pulse EPR study. J. Am. Chem. Soc. 127, 17744–17755 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pérez-González, A. et al. Exploring the role of the central carbide of the nitrogenase active-site FeMo-cofactor through targeted 13 C labeling and ENDOR spectroscopy. J. Am. Chem. Soc. 143, 9183–9190 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raymond, J., Siefert, J. L., Staples, C. R. & Blankenship, R. E. The natural history of nitrogen fixation. Mol. Biol. Evol. 21, 541–554 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boyd, E. S. et al. A late methanogen origin for molybdenum‐dependent nitrogenase. Geobiology 9, 221–232 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 47, W171–W174 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long, F., Wang, L., Lupa, B. & Whitman, W. B. A flexible system for cultivation of Methanococcus and other formate-utilizing methanogens. Archaea 2017, 7046026 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jamali, K. et al. Automated model building and protein identification in cryo-EM maps. Nature 628, 450–457 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moser, J. et al. Structure of ADP-aluminium fluoride-stabilized protochlorophyllide oxidoreductase complex. Proc. Natl Acad. Sci. USA 110, 2094–2098 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia, A. K., McShea, H., Kolaczkowski, B. & Kaçar, B. Reconstructing the evolutionary history of nitrogenases: evidence for ancestral molybdenum‐cofactor utilization. Geobiology 18, 394–411 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valer, L. et al. Methods to identify and characterize iron–sulfur oligopeptides in water. Can. J. Chem. 100, 475–483 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ragsdale, S. W., Raugei, S., Ginovska, B. & Wongnate, T. in The Biological Chemistry of Nickel (eds Zamble, D. et al.) 149–169 (Royal Society of Chemistry, 2017).


    Google Scholar
     

  • Portis, A. M. Electronic structure of F centers: saturation of the electron spin resonance. Phys. Rev. 91, 1071–1078 (1953).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Castner, T. G. Jr. Saturation of the paramagnetic resonance of a V center. Phys. Rev. 115, 1506–1515 (1959).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hirsh, D. J. & Brudvig, G. W. Measuring distances in proteins by saturation-recovery EPR. Nat. Protoc. 2, 1770–1781 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rupp, H., Rao, K. K., Hall, D. O. & Cammack, R. Electron spin relaxation of iron-sulphur proteins studied by microwave power saturation. Biochim. Biophys. Acta Protein Struct. 537, 255–269 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Adam, P. S., Kolyfetis, G. E., Bornemann, T. L., Vorgias, C. E. & Probst, A. J. Genomic remnants of ancestral methanogenesis and hydrogenotrophy in Archaea drive anaerobic carbon cycling. Sci. Adv. 8, eabm9651 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments