Saturday, April 19, 2025
No menu items!
HomeNatureRecurrent humid phases in Arabia over the past 8 million years

Recurrent humid phases in Arabia over the past 8 million years

  • Crocker, A. J. et al. Astronomically controlled aridity in the Sahara since at least 11 million years ago. Nat. Geosci. 15, 671–676 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bibi, F., Kaya, F. & Varela, S. in Sands of Time: Ancient Life in the Late Miocene of Abu Dhabi, United Arab Emirates (eds Bibi, F. et al.) 333–350 (Springer, 2022).

  • Stewart, M. et al. A taxonomic and taphonomic study of Pleistocene fossil deposits from the western Nefud Desert, Saudi Arabia. Quat. Res. 95, 1–22 (2020).

    Article 

    Google Scholar
     

  • Gilbert, C. C., Bibi, F., Hill, A. & Beech, M. J. Early guenon from the late Miocene Baynunah Formation, Abu Dhabi, with implications for cercopithecoid biogeography and evolution. Proc. Natl Acad. Sci. USA 111, 10119–10124 (2014).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Bibi, F. et al. Early evidence for complex social structure in Proboscidea from a late Miocene trackway site in the United Arab Emirates. Biol. Lett. 8, 670–673 (2012).

    Article 
    PubMed Central 

    Google Scholar
     

  • Boisserie, J. R., Schuster, M., Beech, M. J., Hill, A. & Bibi, F. A new species of hippopotamine (Cetartiodactyla, Hippopotamidae) from the late Miocene Baynunah Formation, Abu Dhabi, United Arab Emirates. Palaeovertebrata 40, e2 (2017).

    Article 

    Google Scholar
     

  • Schuster, M. in Sands of Time: Ancient Life in the Late Miocene of Abu Dhabi, United Arab Emirates (eds Bibi, F. et al.) 23–33 (Springer, 2022).

  • Rosenberg, T. M. et al. Humid periods in southern Arabia: windows of opportunity for modern human dispersal. Geology 39, 1115–1118 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Nicholson, S. L. et al. Pluvial periods in Southern Arabia over the last 1.1 million-years. Quat. Sci. Rev. 229, 106112 (2020).

    Article 

    Google Scholar
     

  • Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kaya, F. et al. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol. Evol. 2, 241–246 (2018).

    Article 

    Google Scholar
     

  • Groucutt, H. S. et al. Multiple hominin dispersals into Southwest Asia over the past 400,000 years. Nature 597, 376–380 (2021).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Böhme, M. et al. Neogene hyperaridity in Arabia drove the directions of mammalian dispersal between Africa and Eurasia. Commun. Earth Environ. 2, 85 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, Z. et al. Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago. Nature 559, 608–612 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Etourneau, J., Schneider, R., Blanz, T. & Martinez, P. Intensification of the Walker and Hadley atmospheric circulations during the Pliocene–Pleistocene climate transition. Earth Planet. Sci. Lett. 297, 103–110 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R. & deMenocal, P. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. Nat. Geosci. 12, 657–660 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Vaks, A. et al. Pliocene–Pleistocene climate of the northern margin of Saharan–Arabian Desert recorded in speleothems from the Negev Desert, Israel. Earth Planet. Sci. Lett. 368, 88–100 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Fairchild, I. J. & Baker, A. Speleothem Science: From Process to Past Environments (Wiley, 2012).

  • Woodhead, J. D. et al. The antiquity of Nullarbor speleothems and implications for karst palaeoclimate archives. Sci. Rep. 9, 603 (2019).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Weij, R. et al. Cave opening and fossil accumulation in Naracoorte, Australia, through charcoal and pollen in dated speleothems. Commun. Earth Environ. 3, 210 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Fleitmann, D., Burns, S. J., Matter, A., Cheng, H. & Affolter, S. Moisture and seasonality shifts recorded in Holocene and Pleistocene speleothems from southeastern Arabia. Geophys. Res. Lett. 49, e2021GL097255 (2022).

  • Gázquez, F., Calaforra, J. M., Evans, N. P. & Hodell, D. A. Using stable isotopes (δ17O, δ18O and δD) of gypsum hydration water to ascertain the role of water condensation in the formation of subaerial gypsum speleothems. Chem. Geol. 452, 34–46 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Bosmans, J. H. C., Drijfhout, S. S., Tuenter, E., Hilgen, F. J. & Lourens, L. J. Response of the North African summer monsoon to precession and obliquity forcings in the EC-Earth GCM. Clim. Dyn. 44, 279–297 (2015).

    Article 

    Google Scholar
     

  • Clemens, S. C. & Tiedemann, R. Eccentricity forcing of Pliocene–early Pleistocene climate revealed in a marine oxygen-isotope record. Nature 385, 801–804 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Jennings, R. P. et al. The greening of Arabia: multiple opportunities for human occupation of the Arabian Peninsula during the late Pleistocene inferred from an ensemble of climate model simulations. Quat. Int. 382, 181–199 (2015).

    Article 

    Google Scholar
     

  • Fleitmann, D., Burns, S. J., Neff, U., Mangini, A. & Matter, A. Changing moisture sources over the last 330,000 years in northern Oman from fluid-inclusion evidence in speleothems. Quat. Res. 60, 223–232 (2003).

    Article 

    Google Scholar
     

  • Aggarwal, P. K. Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nat. Geosci. 9, 624–629 (2016).

    Article 

    Google Scholar
     

  • Herold, M. & Lohmann, G. Eemian tropical and subtropical African moisture transport: an isotope modelling study. Clim. Dyn. 33, 1075–1088 (2009).

    Article 

    Google Scholar
     

  • Markowska, M. et al. Modern speleothem oxygen isotope hydroclimate records in water-limited SE Australia. Geochim. Cosmochim. Acta 270, 431–448 (2020).

    Article 
    ADS 

    Google Scholar
     

  • deMenocal, P. B. Plio–Pleistocene African climate. Science 270, 53–59 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Muhs, D. R. The geologic records of dust in the Quaternary. Aeolian Res. 9, 3–48 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Holbourn, A. E. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nat. Commun. 9, 1584 (2018).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Larsen, H. C. Seven million years of glaciation in Greenland. Science 264, 952–955 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J. & Wilson, D. S. Chronology, causes and progression of the Messinian Salinity Crisis. Nature 400, 652–655 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Gargani, J., Moretti, I. & Letouzey, J. Evaporite accumulation during the Messinian Salinity Crisis: the Suez Rift case. Geophys. Res. Lett. https://doi.org/10.1029/2007GL032494 (2008).

  • Ivanovic, R. F., Valdes, P. J., Flecker, R. & Gutjahr, M. Modelling global-scale climate impacts of the late Miocene Messinian Salinity Crisis. Clim. Past 10, 607–622 (2014).

    Article 

    Google Scholar
     

  • Peppe, D. J. et al. in Sands of Time: Ancient Life in the Late Miocene of Abu Dhabi, United Arab Emirates (eds Bibi, F. et al.) 35–54 (Springer, 2022).

  • Hill, L. C. & Bishop, A. in Fossil Vertebrates of Araba: With Emphasis on the Late Miocene Paunas, Geology, and Palaeoenvironments of the Emirate of Abu Dhabi, United Arab Emerties (eds Whybrow, P. & Hill, A.) 254–270 (Yale Univ. Press, 1999).

  • Otero, O. in Sands of Time: Ancient Life in the Late Miocene of Abu Dhabi, United Arab Emirates (eds Bibi, F. et al.) 79–109 (Springer, 2022).

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar
     

  • Uno, K. T., Polissar, P. J., Jackson, K. E. & deMenocal, P. B. Neogene biomarker record of vegetation change in eastern Africa. Proc. Natl Acad. Sci. USA 113, 6355–6363 (2016).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Levin, N. E. Compilation of East Africa soil carbonate stable isotope data, version 1.0. Interdisciplinary Earth Data Alliance https://doi.org/10.1594/IEDA/100231 (2013).

  • Trauth, M. H. et al. Northern Hemisphere glaciation, African climate and human evolution. Quat. Sci. Rev. 268, 107095 (2021).

    Article 

    Google Scholar
     

  • Hennissen, J. A. I., Head, M. J., Schepper, S. & Groeneveld, J. Increased seasonality during the intensification of Northern Hemisphere glaciation at the Pliocene–Pleistocene boundary 2.6 Ma. Quat. Sci. Rev. 129, 321–332 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Auer, G. Timing and pacing of indonesian throughflow restriction and its connection to late Pliocene climate shifts. Paleoceanogr. Paleoclimatol. 34, 635–657 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Berends, C. J., Köhler, P., Lourens, L. J. & Wal, R. S. W. On the cause of the Mid-Pleistocene Transition. Rev. Geophys. 59, e2020RG000727 (2021).

  • Michelsen, N. et al. Isotopic and chemical composition of precipitation in Riyadh, Saudi Arabia. Chem. Geol. 413, 51–62 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Scroxton, N. et al. Natural attrition and growth frequency variations of stalagmites in southwest Sulawesi over the past 530,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 823–833 (2016).

    Article 

    Google Scholar
     

  • Fleitmann, D., Matter, A., Pint, J. J. & Al-Shanti, M. A. The Speleothem Record of Climate Change in Saudi Arabia (Saudi Geological Survey, 2004).

  • Vaks, A., Bar-Matthews, M., Ayalon, A., Matthews, A. & Frumkin, A. Pliocene–Pleistocene palaeoclimate reconstruction from Ashalim Cave speleothems, Negev Desert, Israel. Geol. Soc. Lond. Spec. Publ. 466, 201–216 (2018).

  • Gibert, L. et al. Chronology for the Cueva Victoria fossil site (SE Spain): evidence for early Pleistocene Afro-Iberian dispersals. J. Hum. Evol. 90, 183–197 (2016).

    Article 

    Google Scholar
     

  • Yang, Q. et al. Lead isotope variability in speleothems—a promising new proxy for hydrological change? First results from a stalagmite from western Germany. Chem. Geol. 396, 143–151 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Obert, J. C. et al. 230Th/U dating of Last Interglacial brain corals from Bonaire (southern Caribbean) using bulk and theca wall material. Geochim. Cosmochim. Acta 178, 20–40 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, H. et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371-372, 82–91 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Meyer, M. C., Cliff, R. A., Spötl, C., Knipping, M. & Mangini, A. Speleothems from the earliest Quaternary: snapshots of paleoclimate and landscape evolution at the northern rim of the Alps. Quat. Sci. Rev. 28, 1374–1391 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Ring, U. & Gerdes, A. Kinematics of the Alpenrhein-Bodensee graben system in the Central Alps: Oligocene/Miocene transtension due to formation of the Western Alps arc. Tectonics 35, 1367–1391 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hansman, R. J., Albert, R., Gerdes, A. & Ring, U. Absolute ages of multiple generations of brittle structures by U–Pb dating of calcite. Geology 46, 207–210 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Li, Q., Parrish, R. R., Horstwood, M. S. A. & McArthur, J. M. U–Pb dating of cements in Mesozoic ammonites. Chem. Geol. 376, 76–83 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Gerdes, A. & Zeh, A. Zircon formation versus zircon alteration—new insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem. Geol. 261, 230–243 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Gerdes, A. & Zeh, A. Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet. Sci. Lett. 249, 47–61 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Roberts, N. M. W. et al. A calcite reference material for LA-ICP-MS U–Pb geochronology. Geochem. Geophys. Geosyst. 18, 2807–2814 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Vaks, A. et al. Paleoclimate reconstruction based on the timing of speleothem growth and oxygen and carbon isotope composition in a cave located in the rain shadow in Israel. Quat. Res. 59, 182–193 (2003).

    Article 

    Google Scholar
     

  • Nuriel, P. et al. The use of ASH-15 flowstone as a matrix-matched reference material for laser-ablation U−Pb geochronology of calcite. Geochronology 3, 35–47 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Pagel, M. et al. Improving paleohydrological and diagenetic reconstructions in calcite veins and breccia of a sedimentary basin by combining Δ47 temperature, δ18Owater and U–Pb age. Chem. Geol. 481, 1–17 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Pollard, T. et al. DQPB: software for calculating disequilibrium U–Pb ages. Geochronology 5, 181–196 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kim, S.-T., Coplen, T. B. & Horita, J. Normalization of stable isotope data for carbonate minerals: Implementation of IUPAC guidelines. Geochim. Cosmochim. Acta 158, 276–289 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Sarma, L. P., Prasad, P. S. R. & Ravikumar, N. Raman spectroscopic study of phase transitions in natural gypsum. J. Raman Spectrosc. 29, 851–856 (1998).

    Article 
    ADS 

    Google Scholar
     

  • de Graaf, S. et al. A comparison of isotope ratio mass spectrometry and cavity ring-down spectroscopy techniques for isotope analysis of fluid inclusion water. Rapid Commun. Mass Spectrom. 34, e8837 (2020).

    Article 

    Google Scholar
     

  • Urmos, J., Sharma, S. K. & Mackenzie, F. T. Characterization of some biogenic carbonates with Raman spectroscopy. Am. Mineral. 76, 641–646 (1991).


    Google Scholar
     

  • Gunasekaran, S., Anbalagan, G. & Pandi, S. Raman and infrared spectra of carbonates of calcite structure. J. Raman Spectrosc. 37, 892–899 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Frisia, S. Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimate studies. Int. J. Speleol. 44, 1–16 (2015).


    Google Scholar
     

  • Frisia, S., Borsato, A., Fairchild, I. J. & McDermott, F. Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and southwestern Ireland. J. Sediment. Res. 70, 1183–1196 (2000).

    Article 
    ADS 

    Google Scholar
     

  • van Beynen, P., Bourbonniere, R., Ford, D. & Schwarcz, H. Causes of colour and fluorescence in speleothems. Chem. Geol. 175, 319–341 (2001).

    Article 
    ADS 

    Google Scholar
     

  • McDonough, L. K. et al. Changes in global groundwater organic carbon driven by climate change and urbanization. Nat. Commun. 11, 1279 (2020).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Miller, K. G. et al. Ancient sea level as key to the future. Oceanography 33, 32–41 (2020).

    Article 

    Google Scholar
     

  • Duplessy, J. C., Roche, D. M. & Kageyama, M. The deep ocean during the Last Interglacial period. Science 316, 89–91 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Harrison, S., Smith, D. E. & Glasser, N. F. Late Quaternary meltwater pulses and sea level change. J. Quat. Sci. 34, 1–15 (2019).

    Article 

    Google Scholar
     

  • D’Agostino, R., Lionello, P., Adam, O. & Schneider, T. Factors controlling Hadley circulation changes from the Last Glacial Maximum to the end of the 21st century. Geophys. Res. Lett. 44, 8585–8591 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Brierley, C. M. et al. Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene. Science 323, 1714–1718 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Felis, T. et al. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum. Nat. Commun. 5, 4102 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Köhler, P. & van de Wal, R. S. W. Interglacials of the Quaternary defined by Northern Hemispheric land ice distribution outside of Greenland. Nat. Commun. 11, 5124 (2020).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography https://doi.org/10.1029/2004PA001071 (2005).

  • Nicholson, S. L. et al. A climatic evaluation of the southern dispersal route during MIS 5e. Quat. Sci. Rev. 279, 107378 (2022).

    Article 

    Google Scholar
     

  • Feng, R. et al. Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks. Nat. Commun. 13, 1306 (2022).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Bibi, F., Kraatz, B., Beech, M. J. & Hill, A. in Sands of Time: Ancient Life in the Late Miocene of Abu Dhabi, United Arab Emirates (eds Bibi, F. et al.) 217–239 (Srpinger, 2022).

  • Kraatz, B. in Sands of Time: Ancient Life in the Late Miocene of Abu Dhabi, United Arab Emirates (eds Bibi, F. et al.) 189–199 (Springer, 2022).

  • Bibi, F. Mio-Pliocene faunal exchanges and African biogeography: the record of fossil bovids. PLoS ONE 6, e16688 (2011).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Drake, N. A., Blench, R. M., Armitage, S. J., Bristow, C. S. & White, K. H. Ancient watercourses and biogeography of the Sahara explain the peopling of the desert. Proc. Natl Acad. Sci. USA 108, 458–462 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Stewart, M. et al. Taphonomic and zooarchaeological investigations at the middle Pleistocene site of Ti’s al Ghadah, western Nefud Desert, Saudi Arabia. Quat. Sci. Rev. 218, 228–253 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Delagnes, A. et al. Inland human settlement in southern Arabia 55,000 years ago. New evidence from the Wadi Surdud Middle Paleolithic site complex, western Yemen. J. Hum. Evol. 63, 452–474 (2012).

    Article 

    Google Scholar
     

  • Parton, A. et al. An early MIS 3 pluvial phase in Southeast Arabia: climatic and archaeological implications. Quat. Int. 300, 62–74 (2013).

    Article 

    Google Scholar
     

  • Roberts, P. et al. Fossil herbivore stable isotopes reveal middle Pleistocene hominin palaeoenvironment in ‘Green Arabia’. Nat. Ecol. Evol. 2, 1871–1878 (2018).

    Article 

    Google Scholar
     

  • Groucutt, H. S. et al. Homo sapiens in Arabia by 85,000 years ago. Nat. Ecol. Evol. 2, 800–809 (2018).

    Article 
    PubMed Central 

    Google Scholar
     

  • Stewart, M. et al. Human footprints provide snapshot of last interglacial ecology in the Arabian interior. Sci. Adv. 6, eaba8940 (2020).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • McClure, H. A. Late Quaternary Palaeoenvironments of the Rub’al Khali. PhD thesis, Univ. London (1984).

  • Vrba, E. S. New fossils of Alcelaphini and Caprinae (Bovidae: Mammalia) from Awash, Ethiopia, and phylogenetic analysis of Alcelaphini. Palaeontol. Afr. 34, 127–198 (1997).


    Google Scholar
     

  • Vrba, E. S. in Paleoclimate and Evolution, with Emphasis on Human Origins (eds Vrba, E. S. et al.) 385–424 (Yale Univ. Press, 1995).

  • van der Made, J. Biogeography and climatic change as a context to human dispersal out of Africa and within Eurasia. Quat. Sci. Rev. 30, 1353–1367 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Patnaik, R. Neogene–Quaternary mammalian paleobiogeography of the Indian subcontinent: an appraisal. C. R. Palevol 15, 889–902 (2016).

    Article 

    Google Scholar
     

  • O’Regan, H. J., Turner, A., Bishop, L. C., Elton, S. & Lamb, A. L. Hominins without fellow travellers? First appearances and inferred dispersals of Afro-Eurasian large-mammals in the Plio–Pleistocene. Quat. Sci. Rev. 30, 1343–1352 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Martínez-Navarro, B. in Out of Africa I: The First Hominin Colonization of Eurasia (eds Fleagle, J. G. et al.) 207–224 (Springer, 2010).

  • Bibi, F., Vrba, E. & Fack, F. A new African fossil caprin and a combined molecular and morphological Bayesian phylogenetic analysis of Caprini (Mammalia: Bovidae). J. Evol. Biol. 25, 1843–1854 (2012).

    Article 

    Google Scholar
     

  • Kingston, J. D., Fine Jacobs, B., Hill, A. & Deino, A. Stratigraphy, age and environments of the late Miocene Mpesida Beds, Tugen Hills, Kenya. J. Hum. Evol. 42, 95–116 (2002).

    Article 

    Google Scholar
     

  • Hill, A. et al. Neogene palaeontology and geochronology of the Baringo Basin, Kenya. J. Hum. Evol. 14, 759–773 (1985).

    Article 

    Google Scholar
     

  • Geraads, D. A reassessment of the Bovidae (Mammalia) from the Nawata Formation of Lothagam, Kenya, and the late Miocene diversification of the family in Africa. J. Syst. Paleontol. 17, 169–182 (2019).

    Article 

    Google Scholar
     

  • Renne, P., Morgan, L. E., WoldeGabriel, G., Hart, W. K. & Haile-Selassie, Y. in Ardipithecus Kadabba: Late Miocene Evidence from the Middle Awash, Ethiopia (eds Haile-Selassie, Y. & WoldeGabriel, G.) 93–104 (Univ. California Press, 2009).

  • McDougall, I. et al. New single crystal 40Ar/39Ar ages improve time scale for deposition of the Omo Group, Omo–Turkana Basin, East Africa. J. Geol. Soc. 169, 213–226 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Gentry, A. in Les Faunes Plio-Pléistocène de la Basse Vallée de l’Omo (Éthiopie). Tom 1: Périssodactyles–Artiodactyles (Bovidae) (eds Coppen, Y. & Howell, F. C.) 119–191 (CNRS, 1985).

  • Werdelin, L. & Lewis, M. E. Carnivora from the South Turkwel hominid site, northern Kenya. J. Paleontol. 74, 1173–1180 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Geraads, D., Alemseged, Z., Bobe, R. & Reed, D. Nyctereutes lockwoodi, n. sp., a new canid (Carnivora: Mammalia) from the middle Pliocene of Dikika, Lower Awash, Ethiopia. J. Vertebr. Paleontol. 30, 981–987 (2010).

    Article 

    Google Scholar
     

  • Sahnouni, M. et al. Further research at the Oldowan site of Ain Hanech, north-eastern Algeria. J. Hum. Evol. 43, 925–937 (2002).

    Article 

    Google Scholar
     

  • Martínez-Navarro, B. & Rook, L. Gradual evolution in the African hunting dog lineage systematic implications. C. R. Palevol 2, 695–702 (2003).

    Article 

    Google Scholar
     

  • Suwa, G. E. N. et al. Newly discovered cercopithecid, equid and other mammalian fossils from the Chorora Formation, Ethiopia. Anthropol. Sci. 123, 19–39 (2015).

    Article 

    Google Scholar
     

  • López-Martínez, N., Likius, A., Mackaye, H. T., Vignaud, P. & Brunet, M. A new lagomorph from the late Miocene of Chad (Central Africa). Rev. Esp. Paleontol. 22, 1–20 (2007).


    Google Scholar
     

  • White, T. D., Howell, F. C. & Gilbert, H. The earliest Metridiochoerus (Artiodactyla: Suidae) from the Usno Formation, Ethiopia. Trans. R. Soc. S. Afr. 61, 75–79 (2006).

    Article 

    Google Scholar
     

  • Boisserie, J.-R. & White, T. D. A new species of Pliocene Hippopotamidae from the Middle Awash, Ethiopia. J. Vertebr. Paleontol. 24, 464–473 (2004).

    Article 

    Google Scholar
     

  • Vrba, E. S. & Gatesy, J. New antelope fossils from Awash, Ethiopia, and phylogenetic analysis of Hippotragini (Bovidae, Mammalia). Palaeontol. Afr. 31, 55–72 (1994).


    Google Scholar
     

  • Vrba, E. S., Bibi, F. & Costa, A. G. First Asian record of a late Pleistocene reduncine (Artiodactyla, Bovidae, Reduncini), Sivacobus sankaliai, sp. nov., from Gopnath (Miliolite Formation) Gujarat, India, and a revision of the Asian genus Sivacobus Pilgrim, 1939. J. Vertebr. Paleontol. 35, e943399 (2015).

    Article 

    Google Scholar
     

  • Pilgrim, G. E. The Fossil Bovidae of India (Geological Survey of India, 1939).

  • Dennell, R., Coard, R. & Turner, A. The biostratigraphy and magnetic polarity zonation of the Pabbi Hills, northern Pakistan: an Upper Siwalik (Pinjor Stage) upper Pliocene–lower Pleistocene fluvial sequence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 234, 168–185 (2006).

    Article 

    Google Scholar
     

  • Jukar, A. M., Sun, B., Nanda, A. C. & Bernor, R. L. The first occurrence of Eurygnathohippus Van Hoepen, 1930 (Mammalia, Perissodactyla, Equidae) outside Africa and its biogeographic significance. Boll. Soc. Paleontol. Ital. 58, 171–179 (2019).


    Google Scholar
     

  • Barry, J. C. et al. Faunal and environmental change in the late Miocene Siwaliks of northern Pakistan. Paleobiology 28, 1–71 (2002).

    Article 

    Google Scholar
     

  • Barry, J. C. et al. in Fossil Mammals of Asia (eds Xiaoming, W. et al.) 373–399 (Columbia Univ. Press, 2013).

  • Qiu, Z., Deng, T. & Wang, B. Early Pleistocene mammalian fauna from Longdan, Dongxiang, Gansu, China. Palaeontol. Sin. 191, 1–198 (2004).


    Google Scholar
     

  • Turner, A. & Antón, M. The giant hyaena, Pachycrocuta brevirostris (Mammalia, Carnivora, Hyaenidae). Geobios 29, 455–468 (1996).

    Article 

    Google Scholar
     

  • Bobe, R. & Behrensmeyer, A. K. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207, 399–420 (2004).

    Article 

    Google Scholar
     

  • Bobe, R., Behrensmeyer, A. K. & Chapman, R. E. Faunal change, environmental variability and late Pliocene hominin evolution. J. Hum. Evol. 42, 475–497 (2002).

    Article 

    Google Scholar
     

  • Harris, J. M. & Cerling, T. E. Dietary adaptations of extant and Neogene African suids. J. Zool. 256, 45–54 (2002).

    Article 

    Google Scholar
     

  • Schubert, B. W., Ungar, P. S., Sponheimer, M. & Reed, K. E. Microwear evidence for Plio–Pleistocene bovid diets from Makapansgat Limeworks Cave, South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 241, 301–319 (2006).

    Article 

    Google Scholar
     

  • Patnaik, R. Diet and habitat changes among Siwalik herbivorous mammals in response to Neogene and Quaternary climate changes: an appraisal in the light of new data. Quat. Int. 371, 232–243 (2015).

    Article 

    Google Scholar
     

  • Patnaik, R., Singh, N. P., Paul, D. & Sukumar, R. Dietary and habitat shifts in relation to climate of Neogene–Quaternary proboscideans and associated mammals of the Indian subcontinent. Quat. Sci. Rev. 224, 105968 (2019).

    Article 

    Google Scholar
     

  • Estes, R. The Behavior Guide to African Mammals: Including Hoofed Mammals, Carnivores, Primates (Univ. California Press, 1992).

  • Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the Globe Version 4. CGIAR-CSI SRTM 90 m Database (CGIAR-CSI); http://srtm.csi.cgiar.org.

  • Fischer, H. et al. Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nat. Geosci. 11, 474–485 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Burns, S. J. et al. A 780-year annually resolved record of Indian Ocean monsoon precipitation from a speleothem from South Oman. J. Geophys. Res. Atmos. 107, ACL 9-1–ACL 9-9 (2002).

    Article 

    Google Scholar
     

  • Fleitmann, D. et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat. Sci. Rev. 26, 170–188 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Van Rampelbergh, M. et al. Mid- to late Holocene Indian Ocean Monsoon variability recorded in four speleothems from Socotra Island, Yemen. Quat. Sci. Rev. 65, 129–142 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Shakun, J. D. et al. A high-resolution, absolute-dated deglacial speleothem record of Indian Ocean climate from Socotra Island, Yemen. Earth Planet. Sci. Lett. 259, 442–456 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Fleitmann, D. et al. Holocene forcing of the Indian Monsoon recorded in a stalagmite from southern Oman. Science 300, 1737–1739 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, H. et al. The climate variability in northern Levant over the past 20,000 years. Geophys. Res. Lett. 42, 8641–8650 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Nehme, C. et al. Climate variability in the northern Levant from the highly resolved Qadisha record (Lebanon) during the Holocene optimum. Quat. Res. 118, 180–194 (2024).

    Article 

    Google Scholar
     

  • Nehme, C. et al. Reconstruction of MIS 5 climate in the central Levant using a stalagmite from Kanaan Cave, Lebanon. Clim. Past 11, 1785–1799 (2015).

    Article 

    Google Scholar
     

  • Nehme, C. et al. Climate dynamics during the penultimate glacial period recorded in a speleothem from Kanaan Cave, Lebanon (central Levant). Quat. Res. 90, 10–25 (2018).

    Article 

    Google Scholar
     

  • Orland, I. J. et al. Seasonal resolution of Eastern Mediterranean climate change since 34ka from a Soreq Cave speleothem. Geochim. Cosmochim. Acta 89, 240–255 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Kagan, E. Multisite Late Quaternary Paleoseismology in the Dead Sea Transform Region: Independent Recording by Lake and Cave Sediments. PhD thesis, Hebrew Univ., Jerusalem (2011).

  • Vaks, A. et al. Paleoclimate and location of the border between Mediterranean climate region and the Saharo–Arabian Desert as revealed by speleothems from the northern Negev Desert, Israel. Earth Planet. Sci. Lett. 249, 384–399 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Vaks, A., Bar-Matthews, M., Matthews, A., Ayalon, A. & Frumkin, A. Middle-Late Quaternary paleoclimate of northern margins of the Saharan-Arabian Desert: reconstruction from speleothems of Negev Desert, Israel. Quat. Sci. Rev. 29, 2647–2662 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Frumkin, A., Ford, D. C. & Schwarcz, H. P. Paleoclimate and vegetation of the last glacial cycles in Jerusalem from a speleothem record. Global Biogeochem. Cycles 14, 863–870 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Frumkin, A., Ford, D. C. & Schwarcz, H. P. Continental oxygen isotopic record of the last 170,000 years in Jerusalem. Quat. Res. 51, 317–327 (1999).

    Article 

    Google Scholar
     

  • Lisker, S., Vaks, A., Bar-Matthews, M., Porat, R. & Frumkin, A. Corrigendum to “Late Pleistocene palaeoclimatic and palaeoenvironmental reconstruction of the Dead Sea area (Israel), based on speleothems and cave stromatolites” [Quat. Sci. Rev. 29 (2010) 1201–1211]. Quat. Sci. Rev. 65, 143 (2013).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments