Friday, April 4, 2025
No menu items!
HomeNatureMillimetre-scale bioresorbable optoelectronic systems for electrotherapy

Millimetre-scale bioresorbable optoelectronic systems for electrotherapy

  • Choi, Y. S. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228–1238 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhang, Y. et al. Advances in bioresorbable materials and electronics. Chem. Rev. 123, 11722–11773 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Choi, Y. S. et al. A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 376, 1006–1012 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lumia, F. J. & Rios, J. C. Temporary transvenous pacemaker therapy: an analysis of complications. Chest 64, 604–608 (1973).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wood, M. A. & Ellenbogen, K. A. Cardiac pacemakers from the patient’s perspective. Circulation 105, 2136–2138 (2002).

    PubMed 
    MATH 

    Google Scholar
     

  • Bar-Cohen, Y. et al. Minimally invasive implantation of a micropacemaker into the pericardial space. Circ. Arrhythm. Electrophysiol. 11, e006307 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, J. et al. Permanent epicardial pacing in neonates and infants less than 1 year old: 12-year experience at a single center. Transl. Pediatr. 11, 825–833 (2022).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wildbolz, M., Dave, H., Weber, R., Gass, M. & Balmer, C. Pacemaker implantation in neonates and infants: favorable outcomes with epicardial pacing systems. Pediatr. Cardiol. 41, 910–917 (2020).

    PubMed 

    Google Scholar
     

  • Wilhelm, M. J. et al. Cardiac pacemaker infection: surgical management with and without extracorporeal circulation. Ann. Thorac. Surg. 64, 1707–1712 (1997).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Donovan, K. D. & Lee, K. Y. Indications for and complications of temporary transvenous cardiac pacing. Anaesth. Intensive Care 13, 63–70 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • BRAUN, M. U. et al. Percutaneous lead implantation connected to an external device in stimulation-dependent patients with systemic infection—a prospective and controlled study. Pacing Clin. Electrophysiol. 29, 875–879 (2006).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ouyang, H. et al. Symbiotic cardiac pacemaker. Nat. Commun. 10, 1821 (2019).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lyu, H. et al. Synchronized biventricular heart pacing in a closed-chest porcine model based on wirelessly powered leadless pacemakers. Sci. Rep. 10, 2067 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ho, J. S. et al. Wireless power transfer to deep-tissue microimplants. Proc. Natl Acad. Sci. USA 111, 7974–7979 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wang, S. et al. A self-assembled implantable microtubular pacemaker for wireless cardiac electrotherapy. Sci. Adv. 9, eadj0540 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prominski, A. et al. Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues. Nat. Mater. 21, 647–655 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. Photoelectric cardiac pacing by flexible and degradable amorphous Si radial junction stimulators. Adv. Healthc. Mater. 9, 1901342 (2020).

    CAS 

    Google Scholar
     

  • Wang, L. et al. A fully biodegradable and self-electrified device for neuroregenerative medicine. Sci. Adv. 6, eabc6686 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Self-powered, light-controlled, bioresorbable platforms for programmed drug delivery. Proc. Natl. Acad. Sci. USA 120, e2217734120 (2023).

  • Huang, I. et al. High performance dual-electrolyte magnesium–iodine batteries that can harmlessly resorb in the environment or in the body. Energy Environ. Sci. 15, 4095–4108 (2022).

    CAS 
    MATH 

    Google Scholar
     

  • Won, S. M. et al. Natural wax for transient electronics. Adv. Funct. Mater. 28, 1801819 (2018).

    MATH 

    Google Scholar
     

  • Choi, Y. S. et al. Biodegradable polyanhydrides as encapsulation layers for transient electronics. Adv. Funct. Mater. 30, 2000941 (2020).

    CAS 

    Google Scholar
     

  • Song, G. Control of biodegradation of biocompatable magnesium alloys. Corros. Sci. 49, 1696–1701 (2007).

    CAS 
    MATH 

    Google Scholar
     

  • Schauer, A. et al. Biocompatibility and degradation behavior of molybdenum in an in vivo rat model. Materials 14, 7776 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yin, L. et al. Dissolvable metals for transient electronics. Adv. Funct. Mater. 24, 645–658 (2014).

    CAS 
    MATH 

    Google Scholar
     

  • Yu, K. J. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15, 782–791 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kang, S.-K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, G. et al. Flexible transient phototransistors by use of wafer‐compatible transferred silicon nanomembranes. Small 14, e1802985 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Li, G. et al. Silicon nanomembrane phototransistor flipped with multifunctional sensors toward smart digital dust. Sci. Adv. 6, eaaz6511 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • López Ayerbe, J. et al. Temporary pacemakers: current use and complications. Rev. Esp. Cardiol. Engl. Ed. 57, 1045–1052 (2004).

    MATH 

    Google Scholar
     

  • Yu, L., Nina-Paravecino, F., Kaeli, D. & Fang, Q. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms. J. Biomed. Opt. 23, 1 (2018).

    PubMed 

    Google Scholar
     

  • Fang, Q. & Boas, D. A. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Express 17, 20178 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Taroni, P., Pifferi, A., Torricelli, A., Comelli, D. & Cubeddu, R. In vivo absorption and scattering spectroscopy of biological tissues. Photochem. Photobiol. Sci. 2, 124–129 (2003).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Khan, R., Gul, B., Khan, S., Nisar, H. & Ahmad, I. Refractive index of biological tissues: review, measurement techniques, and applications. Photodiagnosis Photodyn. Ther. 33, 102192 (2021).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Green, M. A. & Keevers, M. J. Optical properties of intrinsic silicon at 300 K. Prog. Photovoltaics Res. Appl. 3, 189–192 (1995).

    CAS 

    Google Scholar
     

  • Firbank, M., Hiraoka, M., Essenpreis, M. & Delpy, D. T. Measurement of the optical properties of the skull in the wavelength range 650–950 nm. Phys. Med. Biol. 38, 503–510 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Rahko, P. S. Evaluation of the skin-to-heart distance in the standing adult by two-dimensional echocardiography. J. Am. Soc. Echocardiogr. 21, 761–764 (2008).

    PubMed 
    MATH 

    Google Scholar
     

  • Chen, R. et al. Deep brain optogenetics without intracranial surgery. Nat. Biotechnol. 39, 161–164 (2021).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yin, R. T. et al. Open thoracic surgical implantation of cardiac pacemakers in rats. Nat. Protoc. 18, 374–395 (2023).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yang, Q. et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 20, 1559–1570 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Shea, J. B. & Sweeney, M. O. Cardiac resynchronization therapy a patient’s guide. Circulation 108, e64–e66 (2003).

  • Connolly, S. J., Kerr, C., Gent, M. & Yusuf, S. Dual-chamber versus ventricular pacing. Circulation 94, 578–583 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Rodés-Cabau, J., Muntané-Carol, G. & Philippon, F. Managing conduction disturbances after TAVR: toward a tailored strategy. JACC Cardiovasc. Interv. 14, 992–994 (2021).

    PubMed 
    MATH 

    Google Scholar
     

  • Urena, M. & Rodés-Cabau, J. Conduction abnormalities: the true Achilles’ heel of transcatheter aortic valve replacement? JACC Cardiovasc. Interv. 9, 2217–2219 (2016).

    PubMed 

    Google Scholar
     

  • Pagnesi, M. et al. Incidence, predictors, and prognostic impact of new permanent pacemaker implantation after TAVR with self-expanding valves. JACC Cardiovasc. Interv. 16, 2004–2017 (2023).

    PubMed 
    MATH 

    Google Scholar
     

  • Reiter, C. et al. Delayed total atrioventricular block after transcatheter aortic valve replacement assessed by implantable loop recorders. JACC Cardiovasc. Interv. 14, 2723–2732 (2021).

    PubMed 

    Google Scholar
     

  • Muntané-Carol, G. et al. Ambulatory electrocardiographic monitoring following minimalist transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 14, 2711–2722 (2021).

    PubMed 

    Google Scholar
     

  • Krishnaswamy, A. et al. Feasibility and safety of same-day discharge following transfemoral transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 15, 575–589 (2022).

    PubMed 
    MATH 

    Google Scholar
     

  • Millimetre-scale, bioresorbable optoelectronic systems for minimally invasive electrotherapy. Code Ocean https://codeocean.com/capsule/9406347/tree/v1 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments