Tuesday, April 1, 2025
No menu items!
HomeNatureCatalytic allylation of native hexoses and pentoses in water with indium

Catalytic allylation of native hexoses and pentoses in water with indium

  • Hernández-Fernández, J., Puello-Polo, E. & Marquez, E. Identifying, quantifying, and recovering a sorbitol-type petrochemical additive in industrial wastewater and its subsequent application in a polymeric matrix as a nucleating agent. Molecules 28, 4948 (2023).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Milliken invests to meet global demand for PP clarifier. Addit. Polym. 2014, 7 (2014).

  • Paben, J. APR gives recyclability thumbs up to PP additive. Resource Recycling (5 September 2019); https://resource-recycling.com/plastics/2019/09/05/apr-gives-recyclability-thumbs-up-to-pp-additive/

  • Market volume of polypropylene worldwide from 2015 to 2022, with a forecast for 2023 to 2030 (in million metric tons). Statista https://www.statista.com/statistics/1245169/polypropylene-market-volume-worldwide (2023).

  • Tullo, A. H. Making clearer polypropylene. Chem. Eng. News 88, 34–36 (2010).


    Google Scholar
     

  • Lin, M.-H. et al. Enabling technologies in carbohydrate chemistry: automated glycan assembly, flow chemistry and data science. Chem. Bio. Chem. 24, e202200607 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, F. & Li, C.-J. En route to metal-mediated and metal-catalysed reactions in water. Chem. Sci. 10, 34–46 (2019).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hanessian, S. Total Synthesis of Natural Products: TheChironApproach (Pergamon Press, 1983).

  • Hanessian, S., Giroux, S. & Merner, B. L. Design and Strategy in Organic Synthesis: From the Chiron Approach to Catalysis (Wiley-VCH, 2013).

  • Newhouse, T., Baran, P. S. & Hoffmann, R. W. The economies of synthesis. Chem. Soc. Rev. 38, 3010–3021 (2009).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Trost, B. M. The atom economy—a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wender, P. A., Verma, V. A., Paxton, T. J. & Pillow, T. H. Function-oriented synthesis, step economy, and drug design. Acc. Chem. Res. 41, 40–49 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Wei, X.-F., Shimizu, Y. & Kanai, M. An expeditious synthesis of sialic acid derivatives by copper(I)-catalyzed stereodivergent propargylation of unprotected aldoses. ACS Cent. Sci. 2, 21–26 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung, K. & Waymouth, R. M. Selective catalytic oxidation of unprotected carbohydrates. ACS Catal. 6, 4653–4659 (2016).

    CAS 
    MATH 

    Google Scholar
     

  • Kan, J. et al. Umpolung carbonyls enable direct allylation and olefination of carbohydrates. Sci. Adv. 8, eabm6840 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmid, W. & Whitesides, G. M. Carbon-carbon bond formation in aqueous ethanol: diastereoselective transformation of unprotected carbohydrates to higher carbon sugars using allyl bromide and tin metal. J. Am. Chem. Soc. 113, 6674–6675 (1991).

    CAS 

    Google Scholar
     

  • Kim, E., Gordon, D. M., Schmid, W. & Whitesides, G. M. Tin- and indium-mediated allylation in aqueous media: application to unprotected carbohydrates. J. Org. Chem. 58, 5500–5507 (1993).

    CAS 

    Google Scholar
     

  • Petrier, C. & Luche, J. L. Allylzinc reagents additions in aqueous media. J. Org. Chem. 50, 910–912 (1985).

    CAS 

    Google Scholar
     

  • Nokami, J., Okawara, R., Otera, J. & Sudo, T. Allylation of aldehydes and ketones in the presence of water by allylic bromides, metallic tin, and aluminum. Organometallics 2, 191–193 (1983).

    CAS 

    Google Scholar
     

  • Chan, T.-H. & Li, C.-J. A concise chemical synthesis of (+)-3-deoxy-dglycerodgalacto-nonulosonic acid (KDN). J. Chem. Soc. Chem. Commun. 1992, 747–748 (1992).

    MATH 

    Google Scholar
     

  • Li, C.-J. & Chan, T. H. Organometallic reactions in aqueous media with indium. Tetrahedron Lett. 32, 7017–7020 (1991).

    CAS 
    MATH 

    Google Scholar
     

  • Tan, K.-T., Chng, S.-S., Cheng, H.-S. & Loh, T.-P. Development of a highly α-regioselective metal-mediated allylation reaction in aqueous media: new mechanistic proposal for the origin of α-homoallylic alcohols. J. Am. Chem. Soc. 125, 2958–2963 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, D., Vemula, S. R., Balasubramanian, N. & Cook, G. R. Indium-mediated stereoselective allylation. Acc. Chem. Res. 49, 2169–2178 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, C. et al. Dibenzylidene sorbitol (DBS)-based compounds, compositions and methods for using such compounds. US patent 2007/0249850 (2007).

  • Xie, C. Substituted alditol compounds, compositions, and methods. US patent 7,888,454 (2011).

  • Yus, M., González-Gómez, J. C. & Foubelo, F. Catalytic enantioselective allylation of carbonyl compounds and imines. Chem. Rev. 111, 7774–7854 (2011).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mlynarski, S. N., Schuster, C. H. & Morken, J. P. Asymmetric synthesis from terminal alkenes by cascades of diboration and cross-coupling. Nature 505, 386–390 (2014).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Denmark, S. E. & Fu, J. Catalytic enantioselective addition of allylic organometallic reagents to aldehydes and ketones. Chem. Rev. 103, 2763–2794 (2003).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Schneider, U., Ueno, M. & Kobayashi, S. Catalytic use of indium(0) for carbon−carbon bond transformations in water: general catalytic allylations of ketones with allylboronates. J. Am. Chem. Soc. 130, 13824–13825 (2008).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Molander, G. A., Cavalcanti, L. N., Canturk, B., Pan, P. S. & Kennedy, L. E. Efficient Hydrolysis of Organotrifluoroborates via Silica Gel and Water. J. Org. Chem. 74, 7364–7369 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saloranta, T. et al. From mannose to small amphiphilic polyol: perfect linearity leads to spontaneous aggregation. Cryst. Growth Des. 16, 655–661 (2016).

    CAS 

    Google Scholar
     

  • Paquette, L. A. & Mitzel, T. M. Addition of allylindium reagents to aldehydes substituted at Cα or Cβ with heteroatomic functional groups. Analysis of the modulation in diastereoselectivity attainable in aqueous, organic, and mixed solvent systems. J. Am. Chem. Soc. 118, 1931–1937 (1996).

    CAS 

    Google Scholar
     

  • Gordon, D. M. & Whitesides, G. M. Indium-mediated allylations of unprotected carbohydrates in aqueous media: a short synthesis of sialic acid. J. Org. Chem. 58, 7937–7938 (1993).

    CAS 
    MATH 

    Google Scholar
     

  • Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nambiar, A. M. K. et al. Bayesian optimization of computer-proposed multistep synthetic routes on an automated robotic flow platform. ACS Cent. Sci. 8, 825–836 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Shields, B. J. et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 590, 89–96 (2021).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hartman, R. L., McMullen, J. P. & Jensen, K. F. Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis. Angew. Chem. Int. Ed. 50, 7502–7519 (2011).

    CAS 
    MATH 

    Google Scholar
     

  • Johnson, M. D. et al. Continuous liquid vapor reactions part 1: design and characterization of a reactor for asymmetric hydroformylation. Org. Process Res. Dev. 20, 888–900 (2016).

    CAS 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments