Tuesday, April 1, 2025
No menu items!
HomeNatureDeconstruction of rubber via C–H amination and aza-Cope rearrangement

Deconstruction of rubber via C–H amination and aza-Cope rearrangement

  • Kim, J. K. et al. (eds) Rubber Recycling: Challenges and Developments (Royal Society of Chemistry, 2018).

  • Andler, R., Valdés, C., Díaz-Barrera, A. & Steinbüchel, A. Biotransformation of poly(cis-1,4-isoprene) in a multiphase enzymatic reactor for continuous extraction of oligo-isoprenoid molecules. New Biotechnol. 58, 10–16 (2020).

    CAS 

    Google Scholar
     

  • Wolf, S. & Plenio, H. On the ethenolysis of end-of-life tire granulates. Green Chem. 15, 315–319 (2013).

    CAS 
    MATH 

    Google Scholar
     

  • Sharpless, K. B. & Hori, T. Allylic amination of olefins and acetylenes by imido sulfur compounds. J. Org. Chem. 41, 176–177 (1976).

    CAS 

    Google Scholar
     

  • Schönberger, N. & Kresze, G. Zur chemie der schwefeldiimide, VI. Enreaktionen und [2+2]-cycloadditionen von N,N′-ditosylschwefeldiimid und N-sulfinyl-p-toluolsulfonamid. Justus Liebigs Ann. Chem. 1975, 1725–1731 (1975).


    Google Scholar
     

  • Ellis, B. Chemistry and Technology of Epoxy Resins (Springer, 2015).

  • 2021 US Scrap Tire Management Summary (US Tire Manufacturer’s Association, 2022); www.ustires.org/system/files/files/2024-02/21%20US%20Scrap%20Tire%20Management%20Report%20101722.pdf.

  • Xu, J. et al. Rubber antioxidants and their transformation products: environmental occurrence and potential impact. Int. J. Environ. Res. Public Health 19, 14595 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gomes, F. O., Rocha, M. R., Alves, A. & Ratola, N. A review of potentially harmful chemicals in crumb rubber used in synthetic football pitches. J. Hazard. Mater. 409, 124998 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Singh, A. et al. Uncontrolled combustion of shredded tires in a landfill–part 2: population exposure, public health response, and an air quality index for urban fires. Atmos. Environ. 104, 273–283 (2015).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Ditzler, R. A. J. & Zhukhovitskiy, A. V. Sigmatropic rearrangements of polymer backbones: vinyl polymers from polyesters in one step. J. Am. Chem. Soc. 143, 20326–20331 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Ratushnyy, M. & Zhukhovitskiy, A. V. Polymer skeletal editing via anionic Brook rearrangements. J. Am. Chem. Soc. 143, 17931–17936 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Ditzler, R. A. J., King, A. J., Towell, S. E., Ratushnyy, M. & Zhukhovitskiy, A. V. Editing of polymer backbones. Nat. Rev. Chem. 7, 600–615 (2023).

    PubMed 

    Google Scholar
     

  • Overman, L. E., Humphreys, P. G. & Welmaker, G. S. in Organic Reactions (ed. Denmark, S. E.) 747–820 (Wiley, 2011).

  • Abu-Rayyan, A. et al. Recent progress in the development of organic chemosensors for formaldehyde detection. ACS Omega 8, 14859–14872 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brewer, T. F. & Chang, C. J. An aza-Cope reactivity-based fluorescent probe for imaging formaldehyde in living cells. J. Am. Chem. Soc. 137, 10886–10889 (2015).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jones, A. C., May, J. A., Sarpong, R. & Stoltz, B. M. Toward a symphony of reactivity: cascades involving catalysis and sigmatropic rearrangements. Angew. Chem. Int. Ed. Engl. 53, 2556–2591 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johannsen, M. & Jørgensen, K. A. Allylic amination. Chem. Rev. 98, 1689–1708 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Hodges, M. N. et al. Upcycling of polybutadiene facilitated by selenium‐mediated allylic amination. Angew. Chem. Int. Ed. Engl. 62, e202303115 (2023).

  • Kresze, G. & Muensterer, H. Bis(methoxycarbonyl)sulfur diimide, a convenient reagent for the allylic amination of alkenes. J. Org. Chem. 48, 3561–3564 (1983).

    CAS 

    Google Scholar
     

  • Bao, H. & Tambar, U. K. Catalytic enantioselective allylic amination of unactivated terminal olefins via an ene reaction/[2,3]-rearrangement. J. Am. Chem. Soc. 134, 18495–18498 (2012).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Campbell, T. W., Monagle, J. J., Foldi, V. S. & Carbodiimides, I. Conversion of isocyanates to carbodiimides with phospholine oxide catalyst. J. Am. Chem. Soc. 84, 3673–3677 (1962).

    CAS 

    Google Scholar
     

  • Bruncko, M., Khuong, T.-A. V. & Sharpless, K. B. Allylic amination and 1,2-diamination with a modified diimidoselenium reagent. Angew. Chem. Int. Ed. Engl. 35, 454–456 (1996).

    CAS 

    Google Scholar
     

  • Natsugari, H., Whittle, R. R. & Weinreb, S. M. Stereocontrolled synthesis of unsaturated vicinal diamines from Diels–Alder adducts of sulfur dioxide bis(imides). J. Am. Chem. Soc. 106, 7867–7872 (1984).

    CAS 

    Google Scholar
     

  • Morgan, K. R., Hemmingson, J. A., Furneaux, R. H. & Stanley, R. A. A 13C solid-state NMR study of ion-exchange resins derived from natural polysaccharides. Carbohydr. Res. 262, 185–194 (1994).

    CAS 

    Google Scholar
     

  • Clarke, C. J., Tu, W.-C., Levers, O., Bröhl, A. & Hallett, J. P. Green and sustainable solvents in chemical processes. Chem. Rev. 118, 747–800 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Engels, H. et al. in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2011).

  • Subba Reddy, B. V., Nair, P. N., Antony, A., Lalli, C. & Grée, R. The aza-Prins reaction in the synthesis of natural products and analogues. Eur. J. Org. Chem. 2017, 1805–1819 (2017).

    CAS 

    Google Scholar
     

  • Martinez, H., Ren, N., Matta, M. E. & Hillmyer, M. A. Ring-opening metathesis polymerization of 8-membered cyclic olefins. Polym. Chem. 5, 3507–3532 (2014).

    CAS 

    Google Scholar
     

  • Kobayashi, S., Pitet, L. M. & Hillmyer, M. A. Regio- and stereoselective ring-opening metathesis polymerization of 3-substituted cyclooctenes. J. Am. Chem. Soc. 133, 5794–5797 (2011).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gaborieau, M. & Castignolles, P. Size-exclusion chromatography (SEC) of branched polymers and polysaccharides. Anal. Bioanal. Chem. 399, 1413–1423 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Tanaka, Y. & Kakiuchi, H. Study of epoxy compounds. Part VI. Curing reactions of epoxy resin and acid anhydride with amine, acid, alcohol, and phenol as catalysts. J. Polym. Sci. A Gen. Pap. 2, 3405–3430 (1964).

    CAS 
    MATH 

    Google Scholar
     

  • Okabe, T. et al. Curing reaction of epoxy resin composed of mixed base resin and curing agent: experiments and molecular simulation. Polymer 54, 4660–4668 (2013).

    CAS 
    MATH 

    Google Scholar
     

  • Kim, S. L., Skibo, M. D., Manson, J. A., Hertzberg, R. W. & Janiszewski, J. Tensile, impact and fatigue behavior of an amine‐cured epoxy resin. Polym. Eng. Sci. 18, 1093–1100 (1978).

    CAS 

    Google Scholar
     

  • Odagiri, N. et al. Amine/epoxy stoichiometric ratio dependence of crosslinked structure and ductility in amine-cured epoxy thermosetting resins. J. Appl. Polym. Sci. 138, 50542 (2021).

    CAS 
    MATH 

    Google Scholar
     

  • Daghyani, H. R., Ye, L., Mai, Y.-W. & Wu, J. Fracture behaviour of a rubber-modified tough epoxy system. J. Mater. Sci. Lett. 13, 1330–1333 (1994).

    CAS 
    MATH 

    Google Scholar
     

  • Daly, J., Pethrick, R. A., Fuller, P., Cunliffe, A. V. & Datta, P. K. Rubber-modified epoxy resins: 1. Equilibrium physical properties. Polymer 22, 32–36 (1981).

    CAS 

    Google Scholar
     

  • Roschangar, F., Sheldon, R. A. & Senanayake, C. H. Overcoming barriers to green chemistry in the pharmaceutical industry–the Green Aspiration LevelTM concept. Green Chem. 17, 752–768 (2015).

    CAS 

    Google Scholar
     

  • Sheldon, R. A. The E factor 25 years on: the rise of green chemistry and sustainability. Green Chem. 19, 18–43 (2017).

    CAS 
    MATH 

    Google Scholar
     

  • Katz, T. J. & Shi, S. A simple allylic amination procedure and the metathesis of N-sulfinylcarbamates. J. Org. Chem. 59, 8297–8298 (1994).

    CAS 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments