Dziewonski, A. M., Lekic, V. & Romanowicz, B. A. Mantle anchor structure: an argument for bottom up tectonics. Earth Planet. Sci. Lett. 299, 69–79 (2010).
Tolstikhin, I., Kramers, J. D. & Hofmann, A. W. A chemical earth model with whole mantle convection: the importance of a core–mantle boundary layer (D″) and its early formation. Chem. Geol. 226, 79–99 (2006).
Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007).
Lee, C.-T. A. et al. Upside-down differentiation and generation of a ‘primordial’ lower mantle. Nature 463, 930–933 (2010).
Carlson, R. W. et al. How did early Earth become our modern world? Annu. Rev. Earth Planet. Sci. 42, 151–178 (2014).
Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M. & Hirose, K. Persistence of strong silica-enriched domains in the earth’s lower mantle. Nat. Geosci. 10, 236–240 (2017).
Willbold, M., Elliott, T. & Moorbath, S. The tungsten isotopic composition of the earth’s mantle before the terminal bombardment. Nature 477, 195–198 (2011).
Touboul, M., Puchtel, I. S. & Walker, R. J. 182W evidence for long-term preservation of early mantle differentiation products. Science 335, 1065–1069 (2012).
Rizo, H., Boyet, M., Blichert-Toft, J. & Rosing, M. T. Early mantle dynamics inferred from 142Nd variations in archean rocks from southwest greenland. Earth Planet. Sci. Lett. 377-378, 324–335 (2013).
Rizo, H. et al. Preservation of earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352, 809–812 (2016).
Morino, P., Caro, G. & Reisberg, L. Differentiation mechanisms of the early Hadean mantle: insights from combined 176Hf-142,143Nd signatures of Archean rocks from the Saglek block. Geochim. Cosmochim. Acta 240, 43–63 (2018).
Kurz, M. D., Curtice, J., Fornari, D., Geist, D. & Moreira, M. Primitive neon from the center of the Galápagos hotspot. Earth Planet. Sci. Lett. 286, 23–34 (2009).
Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).
Caracausi, A., Avice, G., Burnard, P. G., Füri, E. & Marty, B. Chondritic xenon in the Earth’s mantle. Nature 533, 82–85 (2016).
Zhang, N., Zhong, S., Leng, W. & Li, Z.-X. A model for the evolution of the Earth’s mantle structure since the Early Paleozoic. J. Geophys. Res. Solid Earth 115, B06401 (2010).
Thorne, M. S., Garnero, E. J. & Grand, S. P. Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients. Phys. Earth Planet. Inter. 146, 47–63 (2004).
Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).
Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core–mantle boundary. Nature 466, 352–355 (2010).
French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).
Fiquet, G. et al. Melting of peridotite to 140 gigapascals. Science 329, 1516–1518 (2010).
Andrault, D. et al. Solidus and liquidus profiles of chondritic mantle: implication for melting of the earth across its history. Earth Planet. Sci. Lett. 304, 251–259 (2011).
Boukaré, C.-E., Ricard, Y. & Fiquet, G. Thermodynamics of the MgO-FeO-SiO2 system up to 140 GPa: application to the crystallization of Earth’s magma ocean. J Geophys. Res. Solid Earth 120, 6085–6101 (2015).
Caracas, R., Hirose, K., Nomura, R. & Ballmer, M. D. Melt–crystal density crossover in a deep magma ocean. Earth Planet. Sci. Lett. 516, 202–211 (2019).
Miyazaki, Y. & Korenaga, J. On the timescale of magma ocean solidification and its chemical consequences: 2. Compositional differentiation under crystal accumulation and matrix compaction. J. Geophys. Res. Solid Earth 124, 3399–3419 (2019).
Solomatov, V. S. in Treatise on Geophysics (ed. Schubert, G.) Vol. 9, 91–119 (Elsevier, 2007).
Stixrude, L. & Karki, B. Structure and freezing of MgSiO3 liquid in Earth’s lower mantle. Science 310, 297–299 (2005).
Boukaré, C.-E. & Ricard, Y. Modeling phase separation and phase change for magma ocean solidification dynamics. Geochem. Geophys. Geosyst. 18, 3385–3404 (2017).
Tonks, W. B. & Melosh, H. J. The physics of crystal settling and suspension in a turbulent magma ocean. Orig. Earth 1, 151–174 (1990).
Lavorel, G. & Le Bars, M. Sedimentation of particles in a vigorously convecting fluid. Phys. Rev. E 80, 046324 (2009).
Suckale, J., Elkins-Tanton, L. T. & Sethian, J. A. Crystals stirred up: 2. Numerical insights into the formation of the earliest crust on the moon. J. Geophys. Res. Planets 117, E08005 (2012).
Bower, D. J., Sanan, P. & Wolf, A. S. Numerical solution of a non-linear conservation law applicable to the interior dynamics of partially molten planets. Phys. Earth Planet. Inter. 274, 49–62 (2018).
Maas, C. & Hansen, U. Dynamics of a terrestrial magma ocean under planetary rotation: A study in spherical geometry. Earth Planet. Sci. Lett. 513, 81–94 (2019).
Martin, D. & Nokes, R. Crystal settling in a vigorously convecting magma chamber. Nature 332, 534–536 (1988).
Hier-Majumder, S. & Hirschmann, M. M. The origin of volatiles in the Earth’s mantle. Geochem. Geophys. Geosyst. 18, 3078–3092 (2017).
McKenzie, D. The generation and compaction of partially molten rock. J. Petrol. 25, 713–765 (1984).
Bercovici, D., Ricard, Y. & Schubert, G. A two-phase model for compaction and damage: 1. general theory. J. Geophys. Res. Solid Earth 106, 8887–8906 (2001).
Keller, T. & Suckale, J. A continuum model of multi-phase reactive transport in igneous systems. Geophys. J. Int. 219, 185–222 (2019).
Funamori, N. & Sato, T. Density contrast between silicate melts and crystals in the deep mantle: An integrated view based on static-compression data. Earth Planet. Sci. Lett. 295, 435–440 (2010).
Wicks, J. K., Jackson, J. M. & Sturhahn, W. Very low sound velocities in iron-rich (Mg,Fe)O: implications for the core-mantle boundary region. Geophys. Res. Lett. 37, L15304 (2010).
Bower, D. J., Wicks, J. K., Gurnis, M. & Jackson, J. M. A geodynamic and mineral physics model of a solid-state ultralow-velocity zone. Earth Planet. Sci. Lett. 303, 193–202 (2011).
Karki, B. B. & Stixrude, L. P. Viscosity of MgSiO3 liquid at Earth’s mantle conditions: implications for an early magma ocean. Science 328, 740–742 (2010).
Dygert, N., Lin, J.-F., Marshall, E. W., Kono, Y. & Gardner, J. E. A low viscosity lunar magma ocean forms a stratified anorthitic flotation crust with mafic poor and rich units. Geophys. Res. Lett. 44, 11,282–11,291 (2017).
Elkins-Tanton, L. T. Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012).
Kennedy, A., Lofgren, G. & Wasserburg, G. An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules: equilibrium values and kinetic effects. Earth Planet. Sci. Lett. 115, 177–195 (1993).
Corgne, A., Liebske, C., Wood, B. J., Rubie, D. C. & Frost, D. J. Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochim. Cosmochim. Acta 69, 485–496 (2005).
Rizo, H. et al. The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks. Nature 491, 96–100 (2012).
Caro, G., Bourdon, B., Wood, B. J. & Corgne, A. Trace-element fractionation in Hadean mantle generated by melt segregation from a magma ocean. Nature 436, 246–249 (2005).
Maurice, M. et al. Onset of solid-state mantle convection and mixing during magma ocean solidification. J. Geophys. Res. Planets 122, 577–598 (2017).
Morison, A., Labrosse, S., Deguen, R. & Alboussière, T. Timescale of overturn in a magma ocean cumulate. Earth Planet. Sci. Lett. 516, 25–36 (2019).
Mcdonough, W.F. & Sun, S.-s. The composition of the earth. Chem. Geol. 120, 223–253 (1995).
Herzberg, C.T. & O’Hara, M.J. Origin of mantle peridotite and komatiite by partial melting. Geophys. Res. Lett. 12, 541–544 (1985).
Salvador, A. & Samuel, H. Convective outgassing efficiency in planetary magma oceans: insights from computational fluid dynamics. Icarus 390, 115265 (2023).
Parai, R. A dry ancient plume mantle from noble gas isotopes. Proc. Natl Acad. Sci. USA 119, e2201815119 (2022).
Oliveira, B., Afonso, J. C., Zlotnik, S. & Diez, P. Numerical modelling of multiphase multicomponent reactive transport in the earth’s interior. Geophys. J. Int. 212, 345–388 (2018).
Wong, Y.-Q. & Keller, T. A unified numerical model for two-phase porous, mush and suspension flow dynamics in magmatic systems. Geophys. J. Int. 233, 769–795 (2023).
Drew, D. A. Averaged field equations for two-phase media. Stud. Appl. Math. 50, 133–166 (1971).
Ribe, N. M. Theory of melt segregation — a review. J. Volcanol. Geotherm. Res. 33, 241–253 (1987).
Katz, R. F. Magma dynamics with the enthalpy method: benchmark solutions and magmatic focusing at mid-ocean ridges. J. Petrol. 49, 2099–2121 (2008).
Rudge, J. F., Bercovici, D. & Spiegelman, M. Disequilibrium melting of a two phase multicomponent mantle. Geophys. J. Int. 184, 699–718 (2011).
Katz, R. F., Jones, D. W. R., Rudge, J. F. & Keller, T. Physics of melt extraction from the mantle: speed and style. Ann. Rev. Earth Planet. Sci. 50, 507–540 (2022).
Katz, R. F. The Dynamics of Partially Molten Rock (Princeton Univ. Press, 2022).
Šrámek, O., Ricard, Y. & Bercovici, D. Simultaneous melting and compaction in deformable two-phase media. Geophys. J. Int. 168, 964–982 (2007).
Šrámek, O. Modèle d’écoulement biphasé en sciences de la Terre: fusion partielle, compaction et différenciation. Ph.D. thesis, Université de Lyon – Ecole Normale Supérieure, Lyon (2007).
Samuel, H. Time domain parallelization for computational geodynamics. Geochem. Geophys. Geosyst. 13, Q01003 (2012).
Samuel, H. A deformable particle-in-cell method for advective transport in geodynamic modelling. Geophys. J. Int. 214, 1744–1773 (2018).
Samuel, H. & Evonuk, M. Modeling advection in geophysical flows with particle level sets. Geochem. Geophys. Geosyst. 11, Q08020 (2010).
Pusok, A. E., Katz, R. F., May, D. A. & Li, Y. Chemical heterogeneity, convection and asymmetry beneath mid-ocean ridges. Geophys. J. Int. 231, 2055–2078 (2022).
Rabinowicz, M. & Vigneresse, J.-L. Melt segregation under compaction and shear channeling: application to granitic magma segregation in a continental crust. J. Geophys. Res. Solid Earth 109, B04407 (2004).
Nabiei, F. et al. Investigating magma ocean solidification on Earth through laser-heated diamond anvil cell experiments. Geophys. Res. Lett. 48, e2021GL092446 (2021).
Rudge, J. F. The viscosities of partially molten materials undergoing diffusion creep. J. Geophys. Res. Solid Earth 123, 10,534–10,562 (2018).
Connolly, J. A. D. & Schmidt, M. W. Viscosity of crystal-mushes and implications for compaction-driven fluid flow. J. Geophys. Res. Solid Earth 127, e2022JB024743 (2022).
Alappat, C. et al. A recursive algebraic coloring technique for hardware-efficient symmetric sparse matrix-vector multiplication. ACM Trans. Parallel Comput. 7, 19 (2020).
Bollhöfer, M., Schenk, O., Janalik, R., Hamm, S. & Gullapalli, K. in Parallel Algorithms in Computational Science and Engineering 3–33 (Springer, 2020).
Boukaré, C.-E., Badro, J. & Samuel, H. The solidification of Earth’s early mantle led inevitably to a basal magma ocean. IPGP Research Collection https://doi.org/10.18715/IPGP.2024.m42039nd (2025).