Blake, D. T., Strata, F., Churchland, A. K. & Merzenich, M. M. Neural correlates of instrumental learning in primary auditory cortex. Proc. Natl Acad. Sci. USA 99, 10114–10119 (2002).
Poort, J. et al. Learning enhances sensory and multiple non-sensory representations in primary visual cortex. Neuron 86, 1478–1490 (2015).
Meister, M. Learning, fast and slow. Curr. Op. Neurobiol. 75, 102555 (2022).
Carandini, M. & Churchland, A. K. Probing perceptual decisions in rodents. Nat. Neurosci. 16, 824–831 (2013).
Polley, D. B., Heiser, M. A., Blake, D. T., Schreiner, C. E. & Merzenich, M. M. Associative learning shapes the neural code for stimulus magnitude in primary auditory cortex. Proc. Natl Acad. Sci. USA 101, 16351–16356 (2004).
Gallistel, C. R., Fairhurst, S. & Balsam, P. The learning curve: implications of a quantitative analysis. Proc. Natl Acad. Sci. USA 101, 13124–13131 (2004).
Kuchibhotla, K. V. et al. Dissociating task acquisition from expression during learning reveals latent knowledge. Nat. Commun. 10, 2151 (2019).
Schreiner, C. E. & Polley, D. B. Auditory map plasticity: diversity in causes and consequences. Curr. Opin. Neurobiol. 24, 143–156 (2014).
Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y. & Petersen, C. C. Membrane potential correlates of sensory perception in mouse barrel cortex. Nat. Neurosci. 16, 1671–1677 (2013).
Zhu, Z. & Kuchibhotla, K. V. Performance errors during learning reflect a dynamic choice strategy. Curr. Biol. 34, 2107–2117.e5 (2024).
Ohl, F. W., Wetzel, W., Wagner, T., Rech, A. & Scheich, H. Bilateral ablation of auditory cortex in mongolian gerbil affects discrimination of frequency modulated tones but not of pure tones. Learning 6, 347–362 (1999).
Romanski, L. M. & LeDoux, J. E. Bilateral destruction of neocortical and perirhinal projection targets of the acoustic thalamus does not disrupt auditory fear conditioning. Neurosci. Lett. 142, 228–232 (1992).
Ceballo, S., Piwkowska, Z., Bourg, J. & Bathellier, B. Targeted cortical manipulation of auditory perception. Neuron 104, 1168–1179.e5 (2019).
O’sullivan, C., Weible, A. P. & Wehr, M. Auditory cortex contributes to discrimination of pure tones. eNeuro 6, 0340-19.2019 (2019).
Barack, D. L. et al. A call for more clarity around causality in neuroscience. Trends Neurosci. 45, 654–655 (2022).
Slonina, Z. A., Poole, K. C. & Bizley, J. K. What can we learn from inactivation studies? Lessons from auditory cortex. Trends Neurosci. 45, 64–77 (2022).
Jaramillo, S. & Zador, A. M. The auditory cortex mediates the perceptual effects of acoustic temporal expectation. Nat. Neurosci. 14, 246–253 (2011).
Kuchibhotla, K. V. et al. Parallel processing by cortical inhibition enables context-dependent behavior. Nat. Neurosci. 20, 62–71 (2016).
Gimenez, T. L., Lorenc, M. & Jaramillo, S. Adaptive categorization of sound frequency does not require the auditory cortex in rats. J. Neurophysiol. 114, 1137–1145 (2015).
Stoilova, V. V. et al. Auditory cortex reflects goal-directed movement but is not necessary for behavioral adaptation in sound-cued reward tracking. J. Neurophysio. 124, 1056–1071 (2020).
Williams, A. H. et al. Unsupervised discovery of demixed, low-dimensional neural dynamics across multiple timescales through tensor component analysis. Neuron 98, 1099–1115.e8 (2018).
Acar, E., Dunlavy, D. M., Kolda, T. G. & Mørup, M. Scalable tensor factorizations for incomplete data. Chemom. Intell. Lab. Syst. 106, 41–56 (2011).
Kilgard, M. P. & Merzenich, M. M. Cortical map reorganization enabled by nucleus basalis activity. Science 279, 1714–1718 (1998).
Polley, D. B. Perceptual learning directs auditory cortical map reorganization through top-down influences. J. Neurosci. 26, 4970–4982 (2006).
Blake, D. T., Heiser, M. A., Caywood, M. & Merzenich, M. M. Experience-dependent adult cortical plasticity requires cognitive association between sensation and reward. Neuron 52, 371–381 (2006).
Elias, G. A., Bieszczad, K. M. & Weinberger, N. M. Learning strategy refinement reverses early sensory cortical map expansion but not behavior: support for a theory of directed cortical substrates of learning and memory. Neurobiol. Learn. Mem. 126, 39–55 (2015).
Buonomano, D. V. & Merzenich, M. M. Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–186 (1998).
Weinberger, N. M. Specific long-term memory traces in primary auditory cortex. Nat. Rev. Neurosci. 5, 279–290 (2004).
Kato, H. K., Gillet, S. N. & Isaacson, J. S. Flexible sensory representations in auditory cortex driven by behavioral relevance. Neuron 88, 1027–1039 (2015).
Shepard, K. N., Chong, K. K. & Liu, R. C. Contrast enhancement without transient map expansion for species-specific vocalizations in core auditory cortex during learning. eNeuro 3, 0318-16.2016 (2016).
Olshausen, B. A. & Field, D. J. in Problems in Systems Neuroscience (eds van Hemmen, J. L. & Sejnowski, T. J.) 182–212 (Oxford Univ. Press, 2009).
Banerjee, A. et al. Value-guided remapping of sensory circuits by lateral orbitofrontal cortex in reversal learning. Nature 585, 245–250 (2020).
Schneider, D. M., Nelson, A. & Mooney, R. A synaptic and circuit basis for corollary discharge in the auditory cortex. Nature 513, 189–194 (2014).
Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).
Lacefield, C. O., Pnevmatikakis, E. A., Paninski, L. & Bruno, R. M. Reinforcement learning recruits somata and apical dendrites across layers of primary sensory cortex. Cell Rep. 26, 2000–2008.e2 (2019).
Shuler, M. G. & Bear, M. F. Reward timing in the primary visual cortex. Science 311, 1606–1609 (2006).
Guo, L., Weems, J. T., Walker, W. I., Levichev, A. & Jaramillo, S. Choice-selective neurons in the auditory cortex and in its striatal target encode reward expectation. J. Neurosci. 39, 3687–3697 (2019).
Otazu, G. H., Tai, L. H., Yang, Y. & Zador, A. M. Engaging in an auditory task suppresses responses in auditory cortex. Nat. Neurosci. 12, 646–654 (2009).
Fritz, J., Shamma, S., Elhilali, M. & Klein, D. Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat. Neurosci. 6, 1216–1223 (2003).
Insanally, M. N. et al. Spike-timing-dependent ensemble encoding by non-classically responsive cortical neurons. eLife 8, e42409 (2019).
Yang, Y., Lee, J. & Kim, G. Integration of locomotion and auditory signals in the mouse inferior colliculus. eLife 9, e52228 (2020).
Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction, 2nd edn (MIT Press, 2018).
Zhu, F., Elnozahy, S., Lawlor, J. & Kuchibhotla, K. V. The cholinergic basal forebrain provides a parallel channel for state-dependent sensory signaling to auditory cortex. Nat. Neurosci. 26, 810–819 (2023).
Guo, W., Robert, B. & Polley, D. B. The cholinergic basal forebrain links auditory stimuli with delayed reinforcement to support learning. Neuron 103, 1164–1177 (2019).
Liu, D. et al. Orbitofrontal control of visual cortex gain promotes visual associative learning. Nat. Commun. 11, 2784 (2020).
Winkowski, D. E. et al. Orbitofrontal cortex neurons respond to sound and activate primary auditory cortex neurons. Cereb. Cortex 28, 868–879 (2018).
Miller, K. J., Botvinick, M. M. & Brody, C. D. Value representations in the rodent orbitofrontal cortex drive learning, not choice. eLife 11, e64575 (2022).
Ridderinkhof, K. R., Wildenberg, W. P. V. D., Segalowitz, S. J. & Carter, C. S. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn. 56, 129–140 (2004).
Kolling, N., Behrens, T. E. J., Mars, R. B. & Rushworth, M. F. S. Neural mechanisms of foraging. Science 336, 95–98 (2012).
Znamenskiy, P. & Zador, A. M. Corticostriatal neurons in auditory cortex drive decisions during auditory discrimination. Nature 497, 482–485 (2013).
Bajo, V. M. et al. Silencing cortical activity during sound-localization training impairs auditory perceptual learning. Nat. Commun. 10, 3075 (2019).
Kawai, R. et al. Motor cortex is required for learning but not for executing a motor skill. Neuron 86, 800–812 (2015).
Quass, G. L., Rogalla, M. M., Ford, A. N. & Apostolides, P. F. Mixed representations of sound and action in the auditory midbrain. J. Neurosci. 44, e1831232024 (2024).
Hasegawa, M., Huang, Z., Paricio-Montesinos, R. & Gründemann, J. Network state changes in sensory thalamus represent learned outcomes. Nat. Commun. 15, 7830 (2024).
Winer, J. A., Diehl, J. J. & Larue, D. T. Projections of auditory cortex to the medial geniculate body of the cat. J. Comp. Neurol. 430, 27–55 (2001).
Saldaña, E., Feliciano, M. & Mugnaini, E. Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J. Comp. Neurol. 371, 15–40 (1996).
Ledoux, J. E., Farb, C. R. & Romanski, L. M. Overlapping projections to the amygdala and striatum from auditory processing areas of the thalamus and cortex. Neurosci. Lett. 134, 139–144 (1991).
Chen, L., Wang, X., Ge, S. & Xiong, Q. Medial geniculate body and primary auditory cortex differentially contribute to striatal sound representations. Nat. Commun. 10, 418 (2019).
FitzGerald, T. H., Friston, K. J. & Dolan, R. J. Characterising reward outcome signals in sensory cortex. NeuroImage 83, 329–334 (2013).
Huang, Y., Heil, P. & Brosch, M. Associations between sounds and actions in early auditory cortex of nonhuman primates. eLife 8, e43281 (2019).
Li, N. et al. Spatiotemporal constraints on optogenetic inactivation in cortical circuits. eLife 8, e48622 (2019).
Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at bioRxiv https://doi.org/10.1101/061507 (2017).
Vega-Vilar, M., Horvitz, J. C. & Nicola, S. M. NMDA receptor-dependent plasticity in the nucleus accumbens connects reward-predictive cues to approach responses. Nat. Commun. 10, 4429 (2019).
Hitchcock, F. L. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 164–189 (1927).
Hitchcock, F. L. Multilple invariants and generalized rank of a p-way matrix or tensor. J. Math. Phys. 7, 39–79 (1927).
Kolda, T. G. & Bader, B. W. Tensor decompositions and review. SIAM Rev. 51, 455–500 (2009).
Harshman, R. Foundations of the parafac procedure: models and conditions for an “explanatory” multimodal factor analysis. UCLA Work. Pap. Phon. 16, 1– 84 (1970).
Carroll, J. D. & Chang, J. J. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35, 283–319 (1970).
Atiani, S. et al. Emergent selectivity for task-relevant stimuli in higher-order auditory cortex. Neuron 82, 486–499 (2014).
Franceschi, G. D. & Barkat, T. R. Task-induced modulations of neuronal activity along the auditory pathway. Cell Rep. 37, 110115 (2021).
Kruskal, J. B. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Its Appl. 18, 95–138 (1977).
Kolda, T. G. Multilinear Operators for Higher-Order Decompositions https://doi.org/10.2172/923081 (Sandia National Laboratories, 2006).
Acar, E., Dunlavy, D. M. & Kolda, T. G. A scalable optimization approach for fitting canonical tensor decompositions. J. Chemometrics 25, 67–86 (2011).
Tomasi, G. & Bro, R. A comparison of algorithms for fitting the parafac model. Comput. Stat. Data Anal. 50, 1700–1734 (2006).