Eichert, N., Papp, D., Mars, R. B. & Watkins, K. E. Mapping human laryngeal motor cortex during vocalization. Cereb. Cortex 30, 6254–6269 (2020).
Bouchard, K. E., Mesgarani, N., Johnson, K. & Chang, E. F. Functional organization of human sensorimotor cortex for speech articulation. Nature 495, 327–332 (2013).
Chartier, J., Anumanchipalli, G. K., Johnson, K. & Chang, E. F. Encoding of articulatory kinematic trajectories in human speech sensorimotor cortex. Neuron 98, 1042–1054 (2018).
Mugler, E. M. et al. Differential representation of articulatory gestures and phonemes in precentral and inferior frontal gyri. J. Neurosci. 38, 9803–9813 (2018).
Lu, J. et al. Neural control of lexical tone production in human laryngeal motor cortex. Nat. Commun. 14, 6917 (2023).
Dichter, B. K., Breshears, J. D., Leonard, M. K. & Chang, E. F. The control of vocal pitch in human laryngeal motor cortex. Cell 174, 21–31 (2018).
Leonardo, A. & Fee, M. S. Ensemble coding of vocal control in birdsong. J. Neurosci. 25, 652–661 (2005).
Banerjee, A., Chen, F., Druckmann, S. & Long, M. A. Temporal scaling of motor cortical dynamics reveals hierarchical control of vocal production. Nat. Neurosci. 27, 527–535 (2024).
Zhao, L. & Wang, X. Frontal cortex activity during the production of diverse social communication calls in marmoset monkeys. Nat. Commun. 14, 6634 (2023).
Rose, M. C., Styr, B., Schmid, T. A., Elie, J. E. & Yartsev, M. M. Cortical representation of group social communication in bats. Science 374, eaba9584 (2021).
Hage, S. R. & Nieder, A. Single neurons in monkey prefrontal cortex encode volitional initiation of vocalizations. Nat. Commun. 4, 2409 (2013).
Farabaugh, S. M., Brown, E. D. & Dooling, R. J. Analysis of warble song of the budgerigar Melopsittacus undulatus. Bioacoustics 4, 111–130 (1992).
Zhao, Z. et al. Anterior forebrain pathway in parrots is necessary for producing learned vocalizations with individual signatures. Curr. Biol. 33, 5415–5426 (2023).
Hile, A. G., Plummer, T. K. & Striedter, G. F. Male vocal imitation produces call convergence during pair bonding in budgerigars, Melopsittacus undulatus. Anim. Behav. 59, 1209–1218 (2000).
Moussaoui, B., Overcashier, S. L., Kohn, G. M., Araya-Salas, M. & Wright, T. F. Evidence for maintenance of key components of vocal learning in ageing budgerigars despite diminished affiliative social interaction. Proc. R. Soc. B 290, 20230365 (2023).
Lavenex, P. B. Vocal production mechanisms in the budgerigar (Melopsittacus undulatus): the presence and implications of amplitude modulation. J. Acoust. Soc. Am. 106, 491–505 (1999).
Egger, R. et al. Local axonal conduction shapes the spatiotemporal properties of neural sequences. Cell 183, 537–548 (2020).
Durand, S. E., Heaton, J. T., Amateau, S. K. & Brauth, S. E. Vocal control pathways through the anterior forebrain of a parrot (Melopsittacus undulatus). J. Comp. Neurol. 377, 179–206 (1997).
Paton, J. A., Manogue, K. R. & Nottebohm, F. Bilateral organization of the vocal control pathway in the budgerigar, Melopsittacus undulatus. J. Neurosci. 1, 1279–1288 (1981).
Striedter, G. F. The vocal control pathways in budgerigars differ from those in songbirds. J. Comp. Neurol. 343, 35–56 (1994).
Castellucci, G. A., Guenther, F. H. & Long, M. A. A theoretical framework for human and nonhuman vocal interaction. Annu. Rev. Neurosci. 45, 295–316 (2022).
Utianski, R. L. et al. Prosodic and phonetic subtypes of primary progressive apraxia of speech. Brain Lang. 184, 54–65 (2018).
Guenther, F. H. Neural Control of Speech (MIT Press, 2016).
Flinker, A. et al. Redefining the role of Broca’s area in speech. Proc. Natl Acad. Sci. USA 112, 2871–2875 (2015).
Dronkers, N. F. A new brain region for coordinating speech articulation. Nature 384, 159–161 (1996).
Khanna, A. R. et al. Single-neuronal elements of speech production in humans. Nature 626, 603–610 (2024).
Zann, R. A. The Zebra Finch: a Synthesis of Field and Laboratory Studies (Oxford Univ. Press, 1996).
Farabaugh, S. M., Linzenbold, A. & Dooling, R. J. Vocal plasticity in budgerigars (Melopsittacus undulatus): evidence for social factors in the learning of contact calls. J. Comp. Psychol. 108, 81–92 (1994).
Tu, H. W. & Dooling, R. J. Perception of warble song in budgerigars (Melopsittacus undulatus): evidence for special processing. Anim. Cogn. 15, 1151–1159 (2012).
Simpson, H. B. & Vicario, D. S. Brain pathways for learned and unlearned vocalizations differ in zebra finches. J. Neurosci. 10, 1541–1556 (1990).
Yu, A. C. & Margoliash, D. Temporal hierarchical control of singing in birds. Science 273, 1871–1875 (1996).
Heaton, J. T. & Brauth, S. E. Effects of lesions of the central nucleus of the anterior archistriatum on contact call and warble song production in the budgerigar (Melopsittacus undulatus). Neurobiol. Learn. Mem. 73, 207–242 (2000).
Plummer, T. K. & Striedter, G. F. Auditory responses in the vocal motor system of budgerigars. J. Neurobiol. 42, 79–94 (2000).
Elmaleh, M., Kranz, D., Asensio, A. C., Moll, F. W. & Long, M. A. Sleep replay reveals premotor circuit structure for a skilled behavior. Neuron 109, 3851–3861 (2021).
Chi, Z. & Margoliash, D. Temporal precision and temporal drift in brain and behavior of zebra finch song. Neuron 32, 899–910 (2001).
Chettih, S. N., Mackevicius, E. L., Hale, S. & Aronov, D. Barcoding of episodic memories in the hippocampus of a food-caching bird. Cell 187, 1922–1935 (2024).
Schneidman, E., Bialek, W. & Berry, M. J. 2nd Synergy, redundancy, and independence in population codes. J. Neurosci. 23, 11539–11553 (2003).
Mugler, E. M. et al. Direct classification of all American English phonemes using signals from functional speech motor cortex. J. Neural Eng. 11, 035015 (2014).
Mann, D. C., Fitch, W. T., Tu, H. W. & Hoeschele, M. Universal principles underlying segmental structures in parrot song and human speech. Sci. Rep. 11, 776 (2021).
Manabe, K., Kawashima, T. & Staddon, J. E. Differential vocalization in budgerigars: towards an experimental analysis of naming. J. Exp. Anal. Behav. 63, 111–126 (1995).
Manabe, K., Staddon, J. E. R. & Cleaveland, J. M. Control of vocal repertoire by reward in budgerigars (Melopsittacus undulatus). J. Comp. Psychol. 111, 50–62 (1997).
Seki, Y. Cockatiels sing human music in synchrony with a playback of the melody. PLoS ONE 16, e0256613 (2021).
Brauth, S. E., Heaton, J. T., Shea, S. D., Durand, S. E. & Hall, W. S. Functional anatomy of forebrain vocal control pathways in the budgerigar (Melopsittacus undulatus). Ann. NY Acad. Sci. 807, 368–385 (1997).
Moore, B. R. The evolution of learning. Biol. Rev. Camb. Philos. Soc. 79, 301–335 (2004).
Fee, M. S., Shraiman, B., Pesaran, B. & Mitra, P. P. The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird. Nature 395, 67–71 (1998).
Abdel-Maksoud, F. M., Hussein, M. M., Hamdy, A. & Ibrahim, I. A. Anatomical, histological, and electron microscopic structures of syrinx in male budgerigars (Melopsittacus undulatus). Microsc. Microanal. 26, 1226–1235 (2020).
Elemans, C. P. et al. Universal mechanisms of sound production and control in birds and mammals. Nat. Commun. 6, 8978 (2015).
Suthers, R. A., Goller, F. & Pytte, C. The neuromuscular control of birdsong. Philos. Trans. R Soc. Lond. B 354, 927–939 (1999).
Wild, J. M. Neural pathways for the control of birdsong production. J. Neurobiol. 33, 653–670 (1997).
Manogue, K. R. & Nottebohm, F. Relation of medullary motor nuclei to nerves supplying the vocal tract of the budgerigar (Melopsittacus undulatus). J. Comp. Neurol. 204, 384–391 (1982).
Farabaugh, S. M. & Dooling, R. J. in Ecology and Evolution of Acoustic Communication in Birds (eds Kroodsma, D. E. & Miller, E. H.) Ch. 6 (Cornell Univ. Press, 1996).
Gaunt, A. S. & Gaunt, S. L. L. Electromyographic studies of the syrinx in parrots (Aves, Psittacidae). Zoomorphology 105, 1–11 (1985).
Suthers, R. A., Goller, F. & Wild, J. M. Somatosensory feedback modulates the respiratory motor program of crystallized birdsong. Proc. Natl Acad. Sci. USA 99, 5680–5685 (2002).
Sober, S. J., Wohlgemuth, M. J. & Brainard, M. S. Central contributions to acoustic variation in birdsong. J. Neurosci. 28, 10370–10379 (2008).
Bottjer, S. W., Miesner, E. A. & Arnold, A. P. Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224, 901–903 (1984).
Cheung, C., Hamiton, L. S., Johnson, K. & Chang, E. F. The auditory representation of speech sounds in human motor cortex. eLife 5, e12577 (2016).
Solomon, S. G. & Lennie, P. The machinery of colour vision. Nat. Rev. Neurosci. 8, 276–286 (2007).
Castellucci, G. A., Kovach, C. K., Howard, M. A. 3rd, Greenlee, J. D. W. & Long, M. A. A speech planning network for interactive language use. Nature 602, 117–122 (2022).
Long, M. A. et al. Functional segregation of cortical regions underlying speech timing and articulation. Neuron 89, 1187–1193 (2016).
Hozhabri et al. Differential behavioral engagement of inhibitory interneuron subtypes in the zebra finch brain. Neuron https://doi.org/10.1016/j.neuron.2024.11.003 (2024).
Moll, F. W. et al. Thalamus drives vocal onsets in the zebra finch courtship song. Nature 616, 132–136 (2023).
Stringer, C. et al. Rastermap: a discovery method for neural population recordings. Nat. Neurosci. 28, 201–212 (2025).
Elmaleh, M., Yang, Z., Ackert-Smith, L. A. & Long, M. A. Uncoordinated sleep replay across hemispheres in the zebra finch. Curr. Biol. 33, 4704–4712 (2023).
Fukushima, M. & Margoliash, D. The effects of delayed auditory feedback revealed by bone conduction microphone in adult zebra finches. Sci. Rep. 5, 8800 (2015).
Tobin, C., Medina-Garcia, A., Kohn, G. M. & Wright, T. F. Does audience affect the structure of warble song in budgerigars (Melopsittacus undulatus)? Behav. Processes 163, 81–90 (2019).
Godfrey, J. J. & Holliman, E. Switchboard-1 Release 2 LDC97S62. Linguistic Data Consortium https://doi.org/10.35111/sw3h-rw02 (1993).
Tchernichovski, O., Nottebohm, F., Ho, C. E., Pesaran, B. & Mitra, P. P. A procedure for an automated measurement of song similarity. Anim. Behav. 59, 1167–1176 (2000).
Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M., Harris, K. D. Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels. Preprint at bioRxiv https://doi.org/10.1101/061481 (2016).
Rossant, C. et al. Spike sorting for large, dense electrode arrays. Nat. Neurosci. 19, 634–641 (2016).
Rolls, E. T. & Tovee, M. J. Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. J. Neurophysiol. 73, 713–726 (1995).
Goffinet, J., Brudner, S., Mooney, R. & Pearson, J. Low-dimensional learned feature spaces quantify individual and group differences in vocal repertoires. eLife 10, e67855 (2021).
Engelhard, B. et al. Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature 570, 509–513 (2019).
Ito, B. S., Gao, Y., Kardon, B. & Goldberg, J. H. A collicular map for touch-guided tongue control. Nature 637, 1143–1151 (2025).
Chang, L. & Tsao, D. Y. The code for facial identity in the primate brain. Cell 169, 1013–1028 (2017).
Yang, Z. & Long, M. A. Data and code for ‘convergent vocal representations in parrot and human forebrain motor networks’. Zenodo https://doi.org/10.5281/zenodo.14057061 (2025).