Thursday, March 20, 2025
No menu items!
HomeNatureMicrosatellite-based real-time quantum key distribution

Microsatellite-based real-time quantum key distribution

  • Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article 
    ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Azuma, K. et al. Quantum repeaters: from quantum networks to the quantum internet. Rev. Mod. Phys. 95, 045006 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Lu, C.-Y., Cao, Y., Peng, C.-Z. & Pan, J.-W. Micius quantum experiments in space. Rev. Mod. Phys. 94, 035001 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Bedington, R., Arrazola, J. M. & Ling, A. Progress in satellite quantum key distribution. npj Quantum Inf. 3, 30 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Liao, S.-K. et al. Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ren, J.-G et al. Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liao, S.-K. et al. Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120, 030501 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • International space station. NASA https://www.nasa.gov/international-space-station/ (2025).

  • Gu, Y. The China space station: a new opportunity for space science. Natl Sci. Rev. 9, nwab219 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Albulet, M. Spacex Non-geostationary Satellite System: Attachment A Technical Information to Supplement Schedules (US Federal Communications Commission, 2016).

  • Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. In International Conference on Computer System and Signal Processing 175–179 (IEEE, 1984).

  • Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xu, F., Ma, X., Zhang, Q., Lo, H.-K. & Pan, J.-W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 025002 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Peng, C.-Z. et al. Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98, 010505 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rosenberg, D. et al. Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liu, Y. et al. Experimental twin-field quantum key distribution over 1000 km fiber distance. Phys. Rev. Lett. 130, 210801 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bennett, C. H. & Brassard, G. Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working. ACM SIGACT News 20, 78–80 (1989).

    Article 
    MATH 

    Google Scholar
     

  • Peng, C.-Z. et al. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett. 94, 150501 (2005).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Schmitt-Manderbach, T. et al. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sidhu, J. S. et al. Advances in space quantum communications. IET Quantum Commun. 2, 182–217 (2021).

    Article 
    MATH 

    Google Scholar
     

  • de Forges de Parny, L. et al. Satellite-based quantum information networks: use cases, architecture, and roadmap. Commun. Phys. 6, 12 (2023).

    Article 

    Google Scholar
     

  • Chen, Y.-A. et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589, 214–219 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liao, S.-K. et al. Space-to-Ground quantum key distribution using a small-sized payload on Tiangong-2 space lab. Chin. Phys. Lett. 34, 090302 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Oi, D. K. et al. CubeSat quantum communications mission. EPJ Quantum Technol. 4, 6 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Neumann, S. P. et al. Q3Sat: quantum communications uplink to a 3U CubeSat-feasibility & design. EPJ Quantum Technol. 5, 4 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Kerstel, E. et al. Nanobob: a CubeSat mission concept for quantum communication experiments in an uplink configuration. EPJ Quantum Technol. 5, 6 (2018).

    Article 

    Google Scholar
     

  • Haber, R., Garbe, D., Schilling, K. and Rosenfeld, W. QUBE – a cubesat for quantum key distribution experiments. In Proc. 32nd Annual AIAA/USU Conference on Small Satellites, SSC18-III-05 (Utah State University, 2018).

  • Podmore, H. et al. Optical terminal for Canada’s Quantum Encryption and Science Satellite (QEYSSat). In Proc. 2019 IEEE International Conference on Space Optical Systems and Applications 1–5 (IEEE, 2019).

  • Miller, A. V. et al. Vector-towards quantum key distribution with small satellites. EPJ Quantum Technol. 10, 52 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Ahmadi, N. et al. QUICK 3 design of a satellite based quantum light source for quantum communication and extended physical theory tests in space. Adv. Quantum Technol. 2300343, 1–9 (2024).

    MATH 

    Google Scholar
     

  • Villar, A. et al. Entanglement demonstration on board a nano-satellite. Optica 7, 734 (2020).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Wang, X.-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tomamichel, M., Lim, C. C. W., Gisin, N. & Renner, R. Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lim, C. C. W., Curty, M., Walenta, N., Xu, F. & Zbinden, H. Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Roberts, G. L. et al. Patterning-effect mitigating intensity modulator for secure decoy-state quantum key distribution. Opt. Lett. 43, 5110 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Agnesi, C., Avesani, M., Stanco, A., Villoresi, P. & Vallone, G. All-fiber self-compensating polarization encoder for quantum key distribution. Opt. Lett. 44, 2398 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. High-speed robust polarization modulation for quantum key distribution. Opt. Lett. 44, 5262 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, X.-B., Peng, C.-Z., Zhang, J., Yang, L. & Pan, J.-W. General theory of decoy-state quantum cryptography with source errors. Phys. Rev. A 77, 042311 (2008).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Paraïso, T. K. et al. A photonic integrated quantum secure communication system. Nat. Photon. 15, 850–856 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Liao, S.-K. et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photon. 11, 509–513 (2017).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Li, Y. et al. Space-ground QKD network based on a compact payload and medium-inclination orbit. Optica 9, 933 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lucamarini, M., Yuan, Z. L., Dynes, J. F. & Shields, A. J. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Luo, W.-B. et al. Research on polarization compensation for practical satellite-based quantum key distribution. Opt. Commun. 570, 130925 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. Design and in-orbit test of a high accuracy pointing method in satellite-to-ground quantum communication. Opt. Express 28, 8291–8307 (2020).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Qian, Y. et al. Note: A 10 gbps real-time post-processing free physical random number generator chip. Rev. Sci. Instrum. 88, 096105 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Herrero-Collantes, M. & Garcia-Escartin, J. C. Quantum random number generators. Rev. Mod. Phys. 89, 015004 (2017).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Jiang, C., Yu, Z.-W. & Wang, X.-B. Measurement-device-independent quantum key distribution with source state errors and statistical fluctuation. Phys. Rev. A 95, 032325 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Chau, H. F. Decoy-state quantum key distribution with more than three types of photon intensity pulses. Phys. Rev. A 97, 040301 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Tomamichel, M. & Renner, R. Uncertainty relation for smooth entropies. Phys. Rev. Lett. 106, 110506 (2011).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Currás-Lorenzo, G. et al. Tight finite-key security for twin-field quantum key distribution. npj Quantum Inf. 7, 22 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Jiang, C., Hu, X.-L., Yu, Z.-W. & Wang, X.-B. Composable security for practical quantum key distribution with two way classical communication. New J. Phys. 23, 063038 (2021).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Lo, H.-K., Chau, H. F. & Ardehali, M. Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Sidhu, J. S., Brougham, T., McArthur, D., Pousa, R. G. & Oi, D. K. Finite key performance of satellite quantum key distribution under practical constraints. Commun. Phys. 6, 210 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Liao, S.-K. Data for ‘microsatellite-based real-time quantum key distribution’. Zenodo https://doi.org/10.5281/zenodo.14732295 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments