Friday, March 14, 2025
No menu items!
HomeNatureAdaptive locomotion of active solids

Adaptive locomotion of active solids

  • Aguilar, J. et al. A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems. Rep. Prog. Phys. 79, 110001 (2016).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Aguilar, J. et al. Collective clog control: optimizing traffic flow in confined biological and robophysical excavation. Science 361, 672–677 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Brandenbourger, M., Locsin, X., Lerner, E. & Coulais, C. Non-reciprocal robotic metamaterials. Nat. Commun. 10, 4608 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Savoie, W. et al. A robot made of robots: emergent transport and control of a smarticle ensemble. Sci. Robot. 4, eaax4316 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–40 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Aubret, A., Martinet, Q. & Palacci, J. Metamachines of pluripotent colloids. Nat. Commun. 12, 6398 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Miskin, M. Z. et al. Electronically integrated, mass-manufactured, microscopic robots. Nature 584, 557–561 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tan, T. H. et al. Odd dynamics of living chiral crystals. Nature 607, 287–293 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sanchez, T., Chen, D. T., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Needleman, D. & Dogic, Z. Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2, 17048 (2017).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Bricard, A., Caussin, J. B., Desreumaux, N., Dauchot, O. & Bartolo, D. Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 95–98 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bililign, E. et al. Motile dislocations knead odd crystals into whorls. Nat. Phys. 18, 212–218 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shankar, S., Souslov, A., Bowick, M. J., Marchetti, M. C. & Vitelli, V. Topological active matter. Nat. Rev. Phys. 4, 380–398 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Ball, P. Animate materials. MRS Bull. 46, 553–559 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Chen, Y., Li, X., Scheibner, C., Vitelli, V. & Huang, G. Realization of active metamaterials with odd micropolar elasticity. Nat. Commun. 12, 5935 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Scheibner, C. et al. Odd elasticity. Nat. Phys. 16, 475–480 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Marder, E. & Bucher, D. Central pattern generators and the control of rhythmic movements. Curr. Biol. 11, R986–R996 (2001).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Peyret, G. et al. Sustained oscillations of epithelial cell sheets. Biophys. J. 117, 464–478 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gilpin, W., Bull, M. & Prakash, M. The multiscale physics of cilia and flagella. Nat. Rev. Phys. 2, 74–88 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Lavi, I., Piel, M., Lennon-Duménil, A.-M., Voituriez, R. & Gov, N. Deterministic patterns in cell motility. Nat. Phys. 12, 1146–1152 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shankar, S. & Mahadevan, L. Active hydraulics and odd elasticity of muscle fibres. Nat. Phys. 20, 1501–1508 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Keber, F. C. et al. Topology and dynamics of active nematic vesicles. Science 345, 1135–1139 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Giomi, L. & DeSimone, A. Spontaneous division and motility in active nematic droplets. Phys. Rev. Lett. 112, 147802 (2014).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Baconnier, P. et al. Selective and collective actuation in active solids. Nat. Phys. 18, 1234–1239 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Miskin, M. et al. Graphene-based bimorphs for micron-sized, autonomous origami machines. Proc. Natl Acad. Sci. USA 115, 466–470 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDonald, A. & Clerk, A. A. Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics. Nat. Commun. 11, 5382 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mathew, J. P., Pino, J. D. & Verhagen, E. Synthetic gauge fields for phonon transport in a nano-optomechanical system. Nat. Nanotechnol. 15, 198–202 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wanjura, C. C. et al. Quadrature nonreciprocity in bosonic networks without breaking time-reversal symmetry. Nat. Phys. 19, 1429–1436 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Liu, T., Ou, J.-Y., MacDonald, K. & Zheludev, N. Photonic metamaterial analogue of a continuous time crystal. Nat. Phys. 19, 986–991 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Nirody, J., Duran, L., Johnston, D. & Cohen, D. Tardigrades exhibit robust interlimb coordination across walking speeds and terrains. Proc. Natl Acad. Sci. USA 118, e2107289118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kramar, M. & Alim, K. Encoding memory in tube diameter hierarchy of living flow network. Proc. Natl Acad. Sci. USA 118, e2007815118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Full, R., Earls, K., Wong, M. & Caldwell, R. Locomotion like a wheel? Nature 365, 495–495 (1993).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Biewener, A. & Patek, S. Animal Locomotion (Oxford Univ. Press, 2018).

  • Ijspeert, A., Crespi, A., Ryczko, D. & Cabelguen, J.-M. From swimming to walking with a salamander robot driven by a spinal cord model. Science 315, 1416–1420 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thandiackal, R. et al. Emergence of robust self-organized undulatory swimming based on local hydrodynamic force sensing. Sci. Robot. 6, eabf6354 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Choi, S. et al. Learning quadrupedal locomotion on deformable terrain. Sci. Robot. 8, eade2256 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Cui, H. et al. Design and printing of proprioceptive three-dimensional architected robotic metamaterials. Science 376, 1287–1293 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • He, Q. et al. A modular strategy for distributed, embodied control of electronics-free soft robots. Sci. Adv. 9, eade9247 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saintyves, B., Spenko, M. & Jaeger, H. A self-organizing robotic aggregate using solid and liquid-like collective states. Sci. Robot. 9, eadh4130 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • IEEE Spectrum. A compilation of robots falling down at the DARPA Robotics Challenge. YouTube https://www.youtube.com/watch?v=g0TaYhjpOfo (2015).

  • Burden, S., Libby, T., Jayaram, K., Sponberg, S. & Donelan, J. Why animals can outrun robots. Sci. Robot. 9, eadi9754 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Verhey, K. & Hammond, J. Traffic control: regulation of kinesin motors. Nat. Rev. Mol. Cell Biol. 10, 765–777 (2009).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chen, Y., Ju, L., Rushdi, M., Ge, C. & Zhu, C. Receptor-mediated cell mechanosensing. Mol. Biol. Cell 28, 3134–3155 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zehr, E. P. & Stein, R. B. What functions do reflexes serve during human locomotion?. Prog. Neurobiol. 58, 185–205 (1999).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Fruchart, M., Scheibner, C. & Vitelli, V. Odd viscosity and odd elasticity. Annu. Rev. Condens. Matter Phys. 14, 471–510 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Bililign, E. et al. Motile dislocations knead odd crystals into whorls. Nat. Phys. 18, 212–218 (2021).

    Article 

    Google Scholar
     

  • Poncet, A. & Bartolo, D. When soft crystals defy Newton’s third law: nonreciprocal mechanics and dislocation motility. Phys. Rev. Lett. 128, 048002 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Braun, O. & Kivshar, Y. Nonlinear dynamics of the Frenkel–Kontorova model. Phys. Rep. 306, 1–108 (1998).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Ijspeert, A. Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642–653 (2008).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Ryu, H. & Kuo, A. An optimality principle for locomotor central pattern generators. Sci. Rep. 11, 13140 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fruchart, M., Hanai, R., Littlewood, P. B. & Vitelli, V. Non-reciprocal phase transitions. Nature 592, 363–369 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mandal, R. et al. Learning dynamical behaviors in physical systems. Preprint at https://arxiv.org/abs/2406.07856 (2024).

  • Martinez Alvarez, V. M., Barrios Vargas, J. E. & Foa Torres, L. E. F. Non-Hermitian robust edge states in one dimension: anomalous localization and eigenspace condensation at exceptional points. Phys. Rev. B 97, 121401 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ghatak, A., Brandenbourger, M., van Wezel, J. & Coulais, C. Observation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial. Proc. Natl Acad. Sci. USA 117, 29561–29568 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helbig, T. et al. Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys. 16, 747–750 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Xiao, L. et al. Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Coulais, C., Fleury, R. & van Wezel, J. Topology and broken hermiticity. Nat. Phys. 17, 9–13 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Bergholtz, E., Budich, J. & Kunst, F. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Scheibner, C., Irvine, W. T. M. & Vitelli, V. Non-Hermitian band topology and skin modes in active elastic media. Phys. Rev. Lett. 125, 118001 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhou, D. & Zhang, J. Non-Hermitian topological metamaterials with odd elasticity. Phys. Rev. Res. 2, 023173 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Landau, L. et al. Theory of Elasticity. Course of Theoretical Physics (Elsevier Science, 1986).

  • Duan, Q. et al. PyPop7: a pure-Python library for population-based black-box optimization. J. Mach. Learn. Res. 25, 1–28 (2024).

    MATH 

    Google Scholar
     

  • Loshchilov, I., Glasmachers, T. & Beyer, H.-G. Large scale black-box optimization by limited-memory matrix adaptation. IEEE Trans. Evol. Comput. 23, 353–358 (2019).

    Article 

    Google Scholar
     

  • Veenstra, J. et al. Adaptive locomotion of active solids. Zenodo https://doi.org/10.5281/zenodo.13832206 (2025).

  • Coulais, C., Sounas, D. & Alù, A. Static non-reciprocity in mechanical metamaterials. Nature 542, 461–464 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaat, M. & Park, H. Chiral nonreciprocal elasticity and mechanical activity. J. Mech. Phys. Solids 171, 105163 (2023).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments