Friday, March 14, 2025
No menu items!
HomeNatureSpecies turnover does not rescue biodiversity in fragmented landscapes

Species turnover does not rescue biodiversity in fragmented landscapes

  • Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).

    Article 
    MATH 

    Google Scholar
     

  • Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol. Rev. 87, 661–685 (2012).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Fletcher, R. J. et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 226, 9–15 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Simberloff, D. & Abele, L. G. Refuge design and island biogeographic theory: effects of fragmentation. Am. Nat. 120, 41–50 (1982).

    Article 
    MATH 

    Google Scholar
     

  • Fahrig, L. et al. Is habitat fragmentation bad for biodiversity? Biol. Conserv. 230, 179–186 (2019).

    Article 

    Google Scholar
     

  • Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    Article 
    ADS 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).

    Article 
    ADS 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Watling, J. I. et al. Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecol. Lett. 23, 674–681 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Wilson, E. O. & Willis, E. O. in Ecology and Evolution of Communities (eds Cody M. L. & Diamond J. M.) 522–534 (Harvard Univ. Press, 1975).

  • Simberloff, D. & Abele, L. G. Island biogeography theory and conservation practice. Science 191, 285–286 (1976).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117–142 (2006).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Didham, R. K., Kapos, V. & Ewers, R. M. Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121, 161–170 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Lindenmayer, D. B. & Fischer, J. Tackling the habitat fragmentation panchreston. Trends Ecol. Evol. 22, 127–132 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).

    Article 

    Google Scholar
     

  • Riva, F. & Fahrig, L. Landscape‐scale habitat fragmentation is positively related to biodiversity, despite patch‐scale ecosystem decay. Ecol. Lett. 26, 268–277 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Martín-Queller, E., Albert, C. H., Dumas, P. J. & Saatkamp, A. Islands, mainland, and terrestrial fragments: how isolation shapes plant diversity. Ecol. Evol. 7, 6904–6917 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Castro Solar, R. R. et al. How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecol. Lett. 18, 1108–1118 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Pardini, R., de Arruda Bueno, A., Gardner, T. A., Prado, P. I. & Metzger, J. P. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS One 5, e13666 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torrenta, R. & Villard, M.-A. A test of the habitat amount hypothesis as an explanation for the species richness of forest bird assemblages. J. Biogeogr. 44, 1791–1801 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Vieira, M. V., Almeida-Gomes, M., Delciellos, A. C., Cerqueira, R. & Crouzeilles, R. Fair tests of the habitat amount hypothesis require appropriate metrics of patch isolation: an example with small mammals in the Brazilian Atlantic Forest. Biol. Conserv. 226, 264–270 (2018).

    Article 

    Google Scholar
     

  • Fletcher, R. J. Jr., Smith, T. A. H., Kortessis, N., Bruna, E. M. & Holt, R. D. Landscape experiments unlock relationships among habitat loss, fragmentation, and patch-size effects. Ecology 104, e4037 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Horváth, Z., Ptacnik, R., Vad, C. F. & Chase, J. M. Habitat loss over six decades accelerates regional and local biodiversity loss via changing landscape connectance. Ecol. Lett. 22, 1019–1027 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diekötter, T., Billeter, R. & Crist, T. O. Effects of landscape connectivity on the spatial distribution of insect diversity in agricultural mosaic landscapes. Basic Appl. Ecol. 9, 298–307 (2008).

    Article 

    Google Scholar
     

  • Fahrig, L. et al. Resolving the SLOSS dilemma for biodiversity conservation: a research agenda. Biol. Rev. 97, 99–114 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Morante-Filho, J. C., Arroyo-Rodríguez, V. & Faria, D. Patterns and predictors of β-diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest specialist and generalist birds. J. Anim. Ecol. 85, 240–250 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Quinn, J. F. & Harrison, S. P. Effects of habitat fragmentation and isolation on species richness: evidence from biogeographic patterns. Oecologia 75, 132–140 (1988).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • May, F., Rosenbaum, B., Schurr, F. M. & Chase, J. M. The geometry of habitat fragmentation: effects of species distribution patterns on extinction risk due to habitat conversion. Ecol. Evol. 9, 2775–2790 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lôbo, D., Leão, T., Melo, F. P. L., Santos, A. M. M. & Tabarelli, M. Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Divers. Distrib. 17, 287–296 (2011).

    Article 

    Google Scholar
     

  • Arce-Peña, N. P., Arroyo-Rodríguez, V., Avila-Cabadilla, L. D., Moreno, C. E. & Andresen, E. Homogenization of terrestrial mammals in fragmented rainforests: the loss of species turnover and its landscape drivers. Ecol. Appl. 32, e02476 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tscharntke, T., Batáry, P. & Grass, I. Mixing on- and off-field measures for biodiversity conservation. Trends Ecol. Evol. 39, 726–733 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Fahrig, L. Why do several small patches hold more species than few large patches? Glob. Ecol. Biogeogr. 29, 615–628 (2020).

    Article 

    Google Scholar
     

  • Prugh, L. R., Hodges, K. E., Sinclair, A. R. E. & Brashares, J. S. Effect of habitat area and isolation on fragmented animal populations. Proc. Natl Acad. Sci. USA 105, 20770–20775 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Jamoneau, A., Chabrerie, O., Closset-Kopp, D. & Decocq, G. Fragmentation alters beta-diversity patterns of habitat specialists within forest metacommunities. Ecography 35, 124–133 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Dambros, C. S., Junqueira Izzo, T., Castuera de Oliveira, L., Eduardo Vicente, R. & Peres, C. A. Beta-diversity buffers fragmented landscapes against local species losses. Oikos 2024, e10401 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Phillips, H. R. P., Halley, J. M., Urbina-Cardona, J. N. & Purvis, A. The effect of fragment area on site‐level biodiversity. Ecography 41, 1220–1231 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).

    Article 
    MATH 

    Google Scholar
     

  • Graco-Roza, C. et al. Distance decay 2.0—a global synthesis of taxonomic and functional turnover in ecological communities. Glob. Ecol. Biogeogr. 31, 1399–1421 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Arroyo-Rodríguez, V. et al. Plant β-diversity in fragmented rain forests: testing floristic homogenization and differentiation hypotheses. J. Ecol. 101, 1449–1458 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Sfair, J. C., Arroyo-Rodríguez, V., Santos, B. A. & Tabarelli, M. Taxonomic and functional divergence of tree assemblages in a fragmented tropical forest. Ecol. Appl. 26, 1816–1826 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Simberloff, D. & Cox, J. Consequences and costs of conservation corridors. Conserv. Biol. 1, 63–71 (1987).

    Article 
    MATH 

    Google Scholar
     

  • Damschen, E. I. et al. Ongoing accumulation of plant diversity through habitat connectivity in an 18-year experiment. Science 365, 1478–1480 (2019).

    Article 
    ADS 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Villard, M.-A. & Metzger, J. P. Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J. Appl. Ecol. 51, 309–318 (2014).

    Article 
    MATH 

    Google Scholar
     

  • Banks-Leite, C., Ewers, R. M., Folkard-Tapp, H. & Fraser, A. Countering the effects of habitat loss, fragmentation, and degradation through habitat restoration. One Earth 3, 672–676 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Gonçalves-Souza, T. et al. LandFrag: a dataset to investigate the effects of forest loss and fragmentation on biodiversity. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.70015 (2025).

  • Arroyo-Rodríguez, V. & Fahrig, L. Why is a landscape perspective important in studies of primates? Am. J. Primatol. 76, 901–909 (2014).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Article 
    MATH 

    Google Scholar
     

  • Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Marion, Z. H., Fordyce, J. A. & Fitzpatrick, B. M. Pairwise beta diversity resolves an underappreciated source of confusion in calculating species turnover. Ecology 98, 933–939 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level / mixed) regression models. R package version 0.4.7 https://cran.r-project.org/web/packages/DHARMa/ (2022).

  • Cade, B. S. Model averaging and muddled multimodel inferences. Ecology 96, 2370–2382 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article 
    MATH 

    Google Scholar
     

  • Gonçalves-Souza, T. & Vancine, M. Zenodo https://zenodo.org/records/14885581 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments