Burki, F., Roger, A. J., Brown, M. W. & Simpson, A. G. B. The new tree of eukaryotes. Trends Ecol. Evol. 35, 43–55 https://doi.org/10.1016/j.tree.2019.08.008 (2020).
Tikhonenkov, D. V. et al. Microbial predators form a new supergroup of eukaryotes. Nature 612, 714–719 (2022).
Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb. Perspect. Biol. 6, a016139 (2014).
Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).
Strassert, J. F. H., Irisarri, I., Williams, T. A. & Burki, F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat. Commun. 12, 1879 (2021).
Katz, L. A., Grant, J. R., Parfrey, L. W. & Burleigh, J. G. Turning the crown upside down: gene tree parsimony roots the eukaryotic tree of life. Syst. Biol. 61, 653–660 (2012).
Cerón-Romero, M. A., Fonseca, M. M., De Oliveira Martins, L., Posada, D. & Katz, L. A. Phylogenomic analyses of 2,786 genes in 158 lineages support a root of the eukaryotic tree of life between Opisthokonts and all other lineages. Genome Biol. Evol. 14, evac119 (2022).
Cavalier-Smith, T. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol. Lett. 6, 342–345 (2010).
Stechmann, A. & Cavalier-Smith, T. Rooting the eukaryote tree by using a derived gene fusion. Science 297, 89–91 (2002).
Richards, T. A. & Cavalier-Smith, T. Myosin domain evolution and the primary divergence of eukaryotes. Nature 436, 1113–1118 (2005).
Rogozin, I. B., Basu, M. K., Csürös, M. & Koonin, E. V. Analysis of rare genomic changes does not support the Unikont–Bikont phylogeny and suggests cyanobacterial symbiosis as the point of primary radiation of eukaryotes. Genome Biol. Evol. 1, 99–113 (2009).
Leonard, G. & Richards, T. A. Genome-scale comparative analysis of gene fusions, genefissions, and the fungal tree of life. Proc. Natl Acad. Sci. USA 109, 21402–21407 (2012).
Vosseberg, J. et al. Timing the origin of eukaryotic cellular complexity with ancient duplications. Nat. Ecol. Evol. 5, 92–100 (2021).
Eme, L. et al. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 618, 992–999 (2023).
Pittis, A. A. & Gabaldón, T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531, 101–104 (2016).
Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).
Muñoz-Gómez, S. A. et al. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat. Ecol. Evolution 6, 253–262 (2022).
Al Jewari, C. & Baldauf, S. L. An excavate root for the eukaryote Tree of Life. Sci. Adv. 9, eade4973 (2023).
Derelle, R. & Lang, B. F. Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol. Biol. Evol. 29, 1277–1289 (2012).
Derelle, R. et al. Bacterial proteins pinpoint a single eukaryotic root. Proc. Natl Acad. Sci. USA 112, E693–E699 (2015).
He, D., Fiz-Palacios, O., Fu, C. J., Tsai, C. C. & Baldauf, S. L. An alternative root for the eukaryote Tree of Life. Curr. Biol. 24, 465–470 (2014).
Al Jewari, C. & Baldauf, S. L. Conflict over the eukaryote root resides in strong outliers, mosaics and missing data sensitivity of site-specific (CAT) mixture models. Syst. Biol. 0, 1–16 (2022).
Lax, G. et al. Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature 564, 410–414 (2018).
Kapli, P., Yang, Z. & Telford, M. J. Phylogenetic tree building in the genomic age. Nat. Rev. Genet. 21, 428–444 (2020).
Susko, E., Lincker, L. & Roger, A. J. Accelerated estimation of frequency classes in site-heterogeneous profile mixture models. Mol. Biol. Evol. 35, 1266–1283 (2018).
Crotty, S. M. et al. GHOST: recovering historical signal from heterotachously evolved sequence alignments. Syst. Biol. 69, 249–264 (2019).
Gaston, D., Susko, E. & Roger, A. J. A phylogenetic mixture model for the identification of functionally divergent protein residues. Bioinformatics 27, 2655–2663 (2011).
Quang, L. S., Gascuel, O. & Lartillot, N. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24, 2317–2323 (2008).
Szánthó, L. L., Lartillot, N., Szöllősi, G. J. & Schrempf, D. Compositionally constrained sites drive long-branch attraction. Syst. Biol. https://doi.org/10.1093/SYSBIO/SYAD013 (2023).
Jerlström-Hultqvist, J. et al. A unique symbiosome in an anaerobic single-celled eukaryote. Nat. Commun. 15, 9726 (2024).
Baños, H., Susko, E. & Roger, A. J. Is over-parameterization a problem for profile mixture models? Syst. Biol. https://doi.org/10.1093/SYSBIO/SYAD063 (2023).
Brown, M. W. et al. Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol. Evol. 10, 427–433 (2018).
Strassert, J. F. H., Jamy, M., Mylnikov, A. P., Tikhonenkov, D. V. & Burki, F. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote Tree of Life. Mol. Biol. Evol. 36, 757 (2019).
Williamson, K. et al. A robustly rooted tree of eukaryotes reveals their excavate ancestry [Data]. Figshare https://doi.org/10.6084/m9.figshare.26863594.v1 (2025).
Cavalier-Smith, T. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi. Protoplasma 259, 487–593 (2022).
Cavalier-Smith, T. & Chao, E. E. Y. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). Protoplasma 257, 621–753 (2020).
Baker, B. A. et al. Expanded phylogeny of extremely halophilic archaea shows multiple independent adaptations to hypersaline environments. Nat. Microbiol. 9, 964–975 (2024).
Susko, E. Tests for two trees using likelihood methods. Mol. Biol. Evol. 31, 1029–1039 (2014).
Markowski, E. & Susko, E. Performance of topology tests under extreme selection bias. Mol. Biol. Evol. 41, msad280 (2024).
Heiss, A. A. et al. Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes. R. Soc. Open Sci. 5, 171707 (2018).
Susko, E. & Roger, A. J. Long branch attraction biases in phylogenetics. Syst. Biol. 70, 838–843 (2021).
Kapli, P. & Telford, M. J. Topology-dependent asymmetry in systematic errors affects phylogenetic placement of Ctenophora and Xenacoelomorpha. Sci. Adv. 6, 5162–5173 (2020).
Inagaki, Y., Susko, E., Fast, N. M. & Roger, A. J. Covarion shifts cause a long-branch attraction artifact that unites Microsporidia and Archaebacteria in EF-1α phylogenies. Mol. Biol. Evol. 21, 1340–1349 (2004).
Eglit, Y. et al. Meteora sporadica, a protist with incredible cell architecture, is related to Hemimastigophora. Curr. Biol. 34, 451–459.e6 (2024).
Yubuki, N. & Leander, B. S. Evolution of microtubule organizing centers across the tree of eukaryotes. Plant J. 75, 230–244 (2013).
Heiss, A. A., Walker, G. & Simpson, A. G. B. The microtubular cytoskeleton of the apusomonad Thecamonas, a sister lineage to the opisthokonts. Protist 164, 598–621 (2013).
Suzuki-Tellier, S., Kiørboe, T. & Simpson, A. G. B. The function of the feeding groove of ‘typical excavate’ flagellates. J. Eukaryot. Microbiol. 71, e13016 (2024).
Takishita, K. et al. Multigene phylogenies of diverse carpediemonas-like organisms identify the closest relatives of ‘amitochondriate’ diplomonads and retortamonads. Protist 163, 344–355 (2012).
Leger, M. M. et al. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat. Ecol. Evol. 1, 0092 (2017).
Heiss, A. A., Walker, G. & Simpson, A. G. B. The ultrastructure of ancyromonas, a eukaryote without supergroup affinities. Protist 162, 373–393 (2011).
Brugerolle, G. Description of a new freshwater heterotrophic flagellate Sulcomonas lacustris affiliated to the collodictyonids. Acta Protozool. 45, 175–182 (2006).
Brugerolle, G., Bricheux, G., Philippe, H. & Coffe, G. Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) form a new family of flagellates (Collodictyonidae) with tubular mitochondrial cristae that is phylogenetically distant from other flagellate groups. Protist 153, 59–70 (2002).
Tikhonenkov, D. V. et al. Description of Colponema vietnamica sp.n. and Acavomonas peruviana n. gen. n. sp., two new alveolate Phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of alveolates and eukaryotes. PLoS ONE 9, e95467 (2014).
Janouškovec, J. et al. A new lineage of eukaryotes illuminates early mitochondrial genome reduction. Curr. Biol. 27, 3717–3724.e5 (2017).
Leander, B. S. Eukaryotic evolution: deep phylogeny does not imply morphological novelty. Curr. Biol. 33, R112–R114 (2023).
Cavalier-Smith, T. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur. J. Protistol. 49, 115–178 (2013).
Tice, A. K. et al. PhyloFisher: a phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 19, e3001365 (2021).
Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150 (2012).
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
Criscuolo, A. & Gribaldo, S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
Tukey, J. W. Exploratory Data Analysis (Addison-Wesley Publishing Company, 1977).
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268 (2015).
Menardo, F. et al. Treemmer: a tool to reduce large phylogenetic datasets with minimal loss of diversity. BMC Bioinf. 19, 164 (2018).
Susko, E. & Roger, A. J. On the use of information criteria for model selection in phylogenetics. Mol. Biol. Evol. 37, 549–562 (2020).
Lartillot, N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009).
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
Reynolds, D. in Encyclopedia of Biometrics (ed. Li, S. Z.) 659–663 (Springer, 2009).
Brown, M. Data associated with PhyloFisher. Figshare https://doi.org/10.6084/m9.figshare.15141900.v1 (2021).