Friday, March 14, 2025
No menu items!
HomeNatureA robustly rooted tree of eukaryotes reveals their excavate ancestry

A robustly rooted tree of eukaryotes reveals their excavate ancestry

  • Burki, F., Roger, A. J., Brown, M. W. & Simpson, A. G. B. The new tree of eukaryotes. Trends Ecol. Evol. 35, 43–55 https://doi.org/10.1016/j.tree.2019.08.008 (2020).

  • Tikhonenkov, D. V. et al. Microbial predators form a new supergroup of eukaryotes. Nature 612, 714–719 (2022).

    Article 
    ADS 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb. Perspect. Biol. 6, a016139 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Strassert, J. F. H., Irisarri, I., Williams, T. A. & Burki, F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat. Commun. 12, 1879 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Katz, L. A., Grant, J. R., Parfrey, L. W. & Burleigh, J. G. Turning the crown upside down: gene tree parsimony roots the eukaryotic tree of life. Syst. Biol. 61, 653–660 (2012).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cerón-Romero, M. A., Fonseca, M. M., De Oliveira Martins, L., Posada, D. & Katz, L. A. Phylogenomic analyses of 2,786 genes in 158 lineages support a root of the eukaryotic tree of life between Opisthokonts and all other lineages. Genome Biol. Evol. 14, evac119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cavalier-Smith, T. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol. Lett. 6, 342–345 (2010).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Stechmann, A. & Cavalier-Smith, T. Rooting the eukaryote tree by using a derived gene fusion. Science 297, 89–91 (2002).

    Article 
    ADS 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Richards, T. A. & Cavalier-Smith, T. Myosin domain evolution and the primary divergence of eukaryotes. Nature 436, 1113–1118 (2005).

    Article 
    ADS 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Rogozin, I. B., Basu, M. K., Csürös, M. & Koonin, E. V. Analysis of rare genomic changes does not support the Unikont–Bikont phylogeny and suggests cyanobacterial symbiosis as the point of primary radiation of eukaryotes. Genome Biol. Evol. 1, 99–113 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leonard, G. & Richards, T. A. Genome-scale comparative analysis of gene fusions, genefissions, and the fungal tree of life. Proc. Natl Acad. Sci. USA 109, 21402–21407 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vosseberg, J. et al. Timing the origin of eukaryotic cellular complexity with ancient duplications. Nat. Ecol. Evol. 5, 92–100 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Eme, L. et al. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 618, 992–999 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Pittis, A. A. & Gabaldón, T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531, 101–104 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).

  • Muñoz-Gómez, S. A. et al. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat. Ecol. Evolution 6, 253–262 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Al Jewari, C. & Baldauf, S. L. An excavate root for the eukaryote Tree of Life. Sci. Adv. 9, eade4973 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Derelle, R. & Lang, B. F. Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol. Biol. Evol. 29, 1277–1289 (2012).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Derelle, R. et al. Bacterial proteins pinpoint a single eukaryotic root. Proc. Natl Acad. Sci. USA 112, E693–E699 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • He, D., Fiz-Palacios, O., Fu, C. J., Tsai, C. C. & Baldauf, S. L. An alternative root for the eukaryote Tree of Life. Curr. Biol. 24, 465–470 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Al Jewari, C. & Baldauf, S. L. Conflict over the eukaryote root resides in strong outliers, mosaics and missing data sensitivity of site-specific (CAT) mixture models. Syst. Biol. 0, 1–16 (2022).

    MATH 

    Google Scholar
     

  • Lax, G. et al. Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature 564, 410–414 (2018).

  • Kapli, P., Yang, Z. & Telford, M. J. Phylogenetic tree building in the genomic age. Nat. Rev. Genet. 21, 428–444 (2020).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Susko, E., Lincker, L. & Roger, A. J. Accelerated estimation of frequency classes in site-heterogeneous profile mixture models. Mol. Biol. Evol. 35, 1266–1283 (2018).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Crotty, S. M. et al. GHOST: recovering historical signal from heterotachously evolved sequence alignments. Syst. Biol. 69, 249–264 (2019).


    Google Scholar
     

  • Gaston, D., Susko, E. & Roger, A. J. A phylogenetic mixture model for the identification of functionally divergent protein residues. Bioinformatics 27, 2655–2663 (2011).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Quang, L. S., Gascuel, O. & Lartillot, N. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24, 2317–2323 (2008).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Szánthó, L. L., Lartillot, N., Szöllősi, G. J. & Schrempf, D. Compositionally constrained sites drive long-branch attraction. Syst. Biol. https://doi.org/10.1093/SYSBIO/SYAD013 (2023).

  • Jerlström-Hultqvist, J. et al. A unique symbiosome in an anaerobic single-celled eukaryote. Nat. Commun. 15, 9726 (2024).

  • Baños, H., Susko, E. & Roger, A. J. Is over-parameterization a problem for profile mixture models? Syst. Biol. https://doi.org/10.1093/SYSBIO/SYAD063 (2023).

  • Brown, M. W. et al. Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol. Evol. 10, 427–433 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Strassert, J. F. H., Jamy, M., Mylnikov, A. P., Tikhonenkov, D. V. & Burki, F. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote Tree of Life. Mol. Biol. Evol. 36, 757 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Williamson, K. et al. A robustly rooted tree of eukaryotes reveals their excavate ancestry [Data]. Figshare https://doi.org/10.6084/m9.figshare.26863594.v1 (2025).

  • Cavalier-Smith, T. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi. Protoplasma 259, 487–593 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cavalier-Smith, T. & Chao, E. E. Y. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). Protoplasma 257, 621–753 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Baker, B. A. et al. Expanded phylogeny of extremely halophilic archaea shows multiple independent adaptations to hypersaline environments. Nat. Microbiol. 9, 964–975 (2024).

  • Susko, E. Tests for two trees using likelihood methods. Mol. Biol. Evol. 31, 1029–1039 (2014).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Markowski, E. & Susko, E. Performance of topology tests under extreme selection bias. Mol. Biol. Evol. 41, msad280 (2024).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Heiss, A. A. et al. Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes. R. Soc. Open Sci. 5, 171707 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Susko, E. & Roger, A. J. Long branch attraction biases in phylogenetics. Syst. Biol. 70, 838–843 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Kapli, P. & Telford, M. J. Topology-dependent asymmetry in systematic errors affects phylogenetic placement of Ctenophora and Xenacoelomorpha. Sci. Adv. 6, 5162–5173 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Inagaki, Y., Susko, E., Fast, N. M. & Roger, A. J. Covarion shifts cause a long-branch attraction artifact that unites Microsporidia and Archaebacteria in EF-1α phylogenies. Mol. Biol. Evol. 21, 1340–1349 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Eglit, Y. et al. Meteora sporadica, a protist with incredible cell architecture, is related to Hemimastigophora. Curr. Biol. 34, 451–459.e6 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yubuki, N. & Leander, B. S. Evolution of microtubule organizing centers across the tree of eukaryotes. Plant J. 75, 230–244 (2013).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Heiss, A. A., Walker, G. & Simpson, A. G. B. The microtubular cytoskeleton of the apusomonad Thecamonas, a sister lineage to the opisthokonts. Protist 164, 598–621 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Suzuki-Tellier, S., Kiørboe, T. & Simpson, A. G. B. The function of the feeding groove of ‘typical excavate’ flagellates. J. Eukaryot. Microbiol. 71, e13016 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Takishita, K. et al. Multigene phylogenies of diverse carpediemonas-like organisms identify the closest relatives of ‘amitochondriate’ diplomonads and retortamonads. Protist 163, 344–355 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Leger, M. M. et al. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat. Ecol. Evol. 1, 0092 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heiss, A. A., Walker, G. & Simpson, A. G. B. The ultrastructure of ancyromonas, a eukaryote without supergroup affinities. Protist 162, 373–393 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Brugerolle, G. Description of a new freshwater heterotrophic flagellate Sulcomonas lacustris affiliated to the collodictyonids. Acta Protozool. 45, 175–182 (2006).


    Google Scholar
     

  • Brugerolle, G., Bricheux, G., Philippe, H. & Coffe, G. Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) form a new family of flagellates (Collodictyonidae) with tubular mitochondrial cristae that is phylogenetically distant from other flagellate groups. Protist 153, 59–70 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Tikhonenkov, D. V. et al. Description of Colponema vietnamica sp.n. and Acavomonas peruviana n. gen. n. sp., two new alveolate Phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of alveolates and eukaryotes. PLoS ONE 9, e95467 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janouškovec, J. et al. A new lineage of eukaryotes illuminates early mitochondrial genome reduction. Curr. Biol. 27, 3717–3724.e5 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Leander, B. S. Eukaryotic evolution: deep phylogeny does not imply morphological novelty. Curr. Biol. 33, R112–R114 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cavalier-Smith, T. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur. J. Protistol. 49, 115–178 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Tice, A. K. et al. PhyloFisher: a phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 19, e3001365 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150 (2012).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Criscuolo, A. & Gribaldo, S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tukey, J. W. Exploratory Data Analysis (Addison-Wesley Publishing Company, 1977).

  • Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268 (2015).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Menardo, F. et al. Treemmer: a tool to reduce large phylogenetic datasets with minimal loss of diversity. BMC Bioinf. 19, 164 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Susko, E. & Roger, A. J. On the use of information criteria for model selection in phylogenetics. Mol. Biol. Evol. 37, 549–562 (2020).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Lartillot, N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Reynolds, D. in Encyclopedia of Biometrics (ed. Li, S. Z.) 659–663 (Springer, 2009).

  • Brown, M. Data associated with PhyloFisher. Figshare https://doi.org/10.6084/m9.figshare.15141900.v1 (2021).

  • RELATED ARTICLES

    Most Popular

    Recent Comments