Sunday, March 9, 2025
No menu items!
HomeNatureGenome duplication in a long-term multicellularity evolution experiment

Genome duplication in a long-term multicellularity evolution experiment

  • Otto, S. P. The evolutionary consequences of polyploidy. Cell 131, 452–462 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Selmecki, A. M. et al. Polyploidy can drive rapid adaptation in yeast. Nature 519, 349–352 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van de Peer, Y., Mizrachi, E. & Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Vittoria, M. A., Quinton, R. J. & Ganem, N. J. Whole-genome doubling in tissues and tumors. Trends Genet. 39, 954–967 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Comai, L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6, 836–846 (2005).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Storchova, Z. et al. Genome-wide genetic analysis of polyploidy in yeast. Nature 443, 541–547 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Buggs, R. J. et al. Rapid, repeated, and clustered loss of duplicate genes in allopolyploid plant populations of independent origin. Curr. Biol. 22, 248–252 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bozdag, G. O. et al. De novo evolution of macroscopic multicellularity. Nature 617, 747–754 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fox, D. T., Soltis, D. E., Soltis, P. S., Ashman, T. L. & Van de Peer, Y. Polyploidy: a biological force from cells to ecosystems. Trends Cell Biol. 30, 688–694 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mayrose, I. et al. Recently formed polyploid plants diversify at lower rates. Science 333, 1257 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Levin, D. A. Why polyploid exceptionalism is not accompanied by reduced extinction rates. Plant Syst. Evol. 305, 1–11 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Clo, J. & Kolar, F. Short- and long-term consequences of genome doubling: a meta-analysis. Am. J. Bot. 108, 2315–2322 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Gerstein, A. C., Chun, H. J., Grant, A. & Otto, S. P. Genomic convergence toward diploidy in Saccharomyces cerevisiae. PLoS Genet. 2, e145 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerstein, A. C. & Sharp, N. P. The population genetics of ploidy change in unicellular fungi. FEMS Microbiol. Rev. 45, fuab006 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Todd, R. T., Forche, A. & Selmecki, A. Ploidy variation in fungi: polyploidy, aneuploidy, and genome evolution. Microbiol. Spectr. 5, 5–4 (2017).

    Article 

    Google Scholar
     

  • Lu, Y. J., Swamy, K. B. & Leu, J. Y. Experimental evolution reveals interplay between Sch9 and polyploid stability in yeast. PLoS Genet. 12, e1006409 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bomblies, K. When everything changes at once: finding a new normal after genome duplication. Proc. Biol. Sci. 287, 20202154 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doyle, J. J. & Coate, J. E. Polyploidy, the nucleotype, and novelty: the impact of genome doubling on the biology of the cell. Int. J. Plant Sci. 180, 1–52 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Levin, D. A. Polyploidy and novelty in flowering plants. Am. Nat. 122, 1–25 (1983).

    Article 
    MATH 

    Google Scholar
     

  • Mortier, F. et al. Understanding polyploid establishment: temporary persistence or stable coexistence? Oikos https://doi.org/10.1111/oik.09929 (2024).

    Article 

    Google Scholar
     

  • Van de Peer, Y., Ashman, T. L., Soltis, P. S. & Soltis, D. E. Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell 33, 11–26 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Storchova, Z. Ploidy changes and genome stability in yeast. Yeast 31, 421–430 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gerstein, A. C. et al. Polyploid titan cells produce haploid and aneuploid progeny to promote stress adaptation. mBio 6, e01340-15 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirakawa, M. P., Chyou, D. E., Huang, D., Slan, A. R. & Bennett, R. J. Parasex generates phenotypic diversity de novo and impacts drug resistance and virulence in Candida albicans. Genetics 207, 1195–1211 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott, A. L., Richmond, P. A., Dowell, R. D. & Selmecki, A. M. The influence of polyploidy on the evolution of yeast grown in a sub-optimal carbon source. Mol. Biol. Evol. 34, 2690–2703 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bielski, C. M. et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat. Genet. 50, 1189–1195 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ratcliff, W. C., Fankhauser, J. D., Rogers, D. W., Greig, D. & Travisano, M. Origins of multicellular evolvability in snowflake yeast. Nat. Commun. 6, 6102 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jacobeen, S. et al. Cellular packing, mechanical stress and the evolution of multicellularity. Nat. Phys. 14, 286–290 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bozdag, G. O., Libby, E., Pineau, R., Reinhard, C. T. & Ratcliff, W. C. Oxygen suppression of macroscopic multicellularity. Nat. Commun. 12, 2838 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Day, T. C. et al. Morphological entanglement in living systems. Phys. Rev. 14, 011008 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Day, T. C. et al. Cellular organization in lab-evolved and extant multicellular species obeys a maximum entropy law. eLife 11, e72707 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harrison, B. D. et al. A tetraploid intermediate precedes aneuploid formation in yeasts exposed to fluconazole. PLoS Biol. 12, e1001815 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ramsey, J. S. & Schemske, D. W. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Ann. Rev. Ecol. Syst. 29, 467–501 (1998).

    Article 

    Google Scholar
     

  • Gerstein, A. C., McBride, R. M. & Otto, S. P. Ploidy reduction in Saccharomyces cerevisiae. Biol. Lett. 4, 91–94 (2008).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Voordeckers, K. et al. Adaptation to high ethanol reveals complex evolutionary pathways. PLoS Genet. 11, e1005635 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galitski, T., Saldanha, A. J., Styles, C. A., Lander, E. S. & Fink, G. R. Ploidy regulation of gene expression. Science 285, 251–254 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rebolleda-Gomez, M. & Travisano, M. The cost of being big: local competition, importance of dispersal, and experimental evolution of reversal to unicellularity. Am. Nat. 192, 731–744 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Treinin, M. S. G. Mitochondrial activity is required for the expression of IME1, a regulator of meiosis in yeast. Curr. Genet. 23, 223–227 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilchrist, C. & Stelkens, R. Aneuploidy in yeast: segregation error or adaptation mechanism? Yeast 36, 525–539 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Vande Zande, P., Zhou, X. & Selmecki, A. The dynamic fungal genome: polyploidy, aneuploidy and copy number variation in response to stress. Annu. Rev. Microbiol. 77, 341–361 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Donnell, S. et al. Telomere-to-telomere assemblies of 142 strains characterize the genome structural landscape in Saccharomyces cerevisiae. Nat. Genet. 55, 1390–1399 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • De Chiara, M. et al. Domestication reprogrammed the budding yeast life cycle. Nat. Ecol. Evol. 6, 448–460 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Albertin, W. et al. Evidence for autotetraploidy associated with reproductive isolation in Saccharomyces cerevisiae: towards a new domesticated species. J. Evol. Biol. 22, 2157–2170 (2009).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yona, A. H. et al. Chromosomal duplication is a transient evolutionary solution to stress. Proc. Natl Acad. Sci. USA 109, 21010–21015 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Li, R. & Zhu, J. Effects of aneuploidy on cell behaviour and function. Nat. Rev. Mol. Cell Biol. 23, 250–265 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19, 1634–1641 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cherry, J. M. et al. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res. 40, D700–D705 (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  • Van der Auwera, G. A. & O’Connor, B. D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra (O’Reilly Media, 2020).

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Todd, R. T., Braverman, A. L. & Selmecki, A. Flow cytometry analysis of fungal ploidy. Curr. Protoc. Microbiol. 50, e58 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments