Monday, June 16, 2025
No menu items!
HomeNatureImpact of Amazonian deforestation on precipitation reverses between seasons

Impact of Amazonian deforestation on precipitation reverses between seasons

  • Smith, C., Baker, J. C. A. & Spracklen, D. V. Tropical deforestation causes large reductions in observed precipitation. Nature 615, 270–275 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, 10 (2021).

    Article 

    Google Scholar
     

  • Silva Junior, C. H. L. et al. The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nat. Ecol. Evol. 5, 144–145 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Zeng, Z. et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 14, 23–29 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 1–8 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Spracklen, D. V., Baker, J. C. A., Garcia-Carreras, L. & Marsham, J. H. The effects of tropical vegetation on rainfall. Annu. Rev. Environ. Resour. 43, 193–218 (2018).

    Article 

    Google Scholar
     

  • Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahão, G. M. & Börner, J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 12, 2591 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9, 679 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winckler, J., Lejeune, Q., Reick, C. H. & Pongratz, J. Nonlocal effects dominate the global mean surface temperature response to the biogeophysical effects of deforestation. Geophys. Res. Lett. 46, 745–755 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Winckler, J., Reick, C. H. & Pongratz, J. Robust identification of local biogeophysical effects of land-cover change in a global climate model. J. Clim. 30, 1159–1176 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Dominguez, F. et al. Amazonian moisture recycling revisited using WRF with water vapor tracers. JGR Atmos. 127, 4 (2022).

    MATH 

    Google Scholar
     

  • Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Change 8, 539–543 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele‐Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, W09525 (2010).

    ADS 

    Google Scholar
     

  • Cui, J. et al. Global water availability boosted by vegetation-driven changes in atmospheric moisture transport. Nat. Geosci. 15, 982–988 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Staal, A., Koren, G., Tejada, G. & Gatti, L. V. Moisture origins of the Amazon carbon source region. Environ. Res. Lett. 18, 4 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Devaraju, N., Bala, G. & Modak, A. Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects. Proc. Natl Acad. Sci. USA 112, 3257–3262 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Potapov, P. et al. The global 2000-2020 land cover and land use change dataset derived from the Landsat archive: first results. Front. Remote Sens. 3, 856903 (2022).

    Article 

    Google Scholar
     

  • Skamarock, W. C. et al. A description of the Advanced Research WRF model version 4. NSF https://doi.org/10.5065/1dfh-6p97 (2019).

  • Insua-Costa, D. & Miguez-Macho, G. A new moisture tagging capability in the Weather Research and Forecasting model: formulation, validation and application to the 2014 Great Lake-effect snowstorm. Earth Syst. Dynam. 9, 167–185 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Qin, Y. et al. Sub‐grid representation of vegetation cover in land surface schemes improves the modeling of how climate responds to deforestation. Geophys. Res. Lett. 50, 15 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Chen, C.-C. et al. Thermodynamic and dynamic responses to deforestation in the maritime continent: a modeling study. J. Clim. 32, 3505–3527 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Duku, C. & Hein, L. The impact of deforestation on rainfall in Africa: a data-driven assessment. Environ. Res. Lett. 16, 6 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Taylor, C. M. et al. “Late-stage” deforestation enhances storm trends in coastal West Africa. Proc. Natl Acad. Sci. USA 119, 2 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Yang, Z. & Dominguez, F. Investigating land surface effects on the moisture transport over South America with a moisture tagging model. J. Clim. 32, 6627–6644 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Elguindi, N. et al. Regional Climate Model RegCM Reference Manual v. 4.7 (ICTP, 2017).

  • Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Staal, A. et al. Feedback between drought and deforestation in the Amazon. Environ. Res. Lett. 15, 044024 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Flores, B. M. & Staal, A. Feedback in tropical forests of the Anthropocene. Glob. Chang. Biol. 28, 5041–5061 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staal, A., Dekker, S. C., Hirota, M. & Van Nes, E. H. Synergistic effects of drought and deforestation on the resilience of the south-eastern Amazon rainforest. Ecol. Complex. 22, 65–75 (2015).

    Article 

    Google Scholar
     

  • Li, W. et al. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data 10, 219–234 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • De Hertog, S. J. et al. Effects of idealized land cover and land management changes on the atmospheric water cycle. Earth Syst. Dynam. 15, 265–291 (2024).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Chen, M. et al. Global land use for 2015-2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. Sci. Data 7, 320 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lejeune, Q., Davin, E. L., Guillod, B. P. & Seneviratne, S. I. Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Clim. Dyn. 44, 2769–2786 (2015).

    Article 

    Google Scholar
     

  • Nakicenovic, N. et al. IPCC Special Report on Emissions Scenarios (eds Nakicenovic, N. & Swart, R.) (Cambridge Univ. Press, 2000).

  • O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Feng, X. et al. How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature 597, 516–521 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lamb, D., Erskine, P. D. & Parrotta, J. A. Restoration of degraded tropical forest landscapes. Science 310, 1628–1632 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Houspanossian, J. et al. Agricultural expansion raises groundwater and increases flooding in the South American plains. Science 380, 1344–1348 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Dottori, F. et al. Increased human and economic losses from river flooding with anthropogenic warming. Nat. Clim. Change 8, 781–786 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Aragão, L. E. O. C. et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Masuda, Y. J. et al. Warming from tropical deforestation reduces worker productivity in rural communities. Nat. Commun. 12, 1601 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wang, D. et al. The critical effect of subgrid-scale scheme on simulating the climate impacts of deforestation. J. Geophys. Res. Atmos. 126, e2021JD035133 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Flores, B. M. et al. Critical transitions in the Amazon forest system. Nature 626, 555–564 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lawrence, D. M. et al. The Community Land Model Version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model Earth Syst. 11, 4245–4287 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • NOAA National Centers of Environmental Information. Global Surface Summary of the Day – GSOD. 1.0 (NOAA National Centers for Environmental Information, 1999).

  • Hou, A. Y. et al. The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc. 95, 701–722 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sadeghi, M. et al. PERSIANN-CCS-CDR, a 3-hourly 0.04° global precipitation climate data record for heavy precipitation studies. Sci. Data 8, 157 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nguyen, P. et al. PERSIANN Dynamic Infrared–Rain Rate (PDIR-Now): a near-real-time, quasi-global satellite precipitation dataset. J. Hydrometeorol. 21, 2893–2906 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Smith, C. et al. Observed and simulated local climate responses to tropical deforestation. Environ. Res. Lett. 18, 104004 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Kumar, S. et al. Land use/cover change impacts in CMIP5 climate simulations: A new methodology and 21st century challenges. JGR Atmos. 118, 6337–6353 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Lejeune, Q., Davin, E. L., Gudmundsson, L., Winckler, J. & Seneviratne, S. I. Historical deforestation locally increased the intensity of hot days in northern mid-latitudes. Nat. Clim. Change 8, 386–390 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Thiery, W. et al. Warming of hot extremes alleviated by expanding irrigation. Nat. Commun. 11, 290 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Qin, Y. Impact of Amazonian deforestation on precipitation reverses between seasons. figshare https://doi.org/10.6084/m9.figshare.24911454 (2023).

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Justice, C. O. et al. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 83, 3–15 (2002).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Hong, S.-Y. & Lim, J.-O. J. The WRF single-moment 6-class microphysics scheme (WSM6). Asia Pac. J. Atmos. Sci. 42, 129–151 (2006).

    MATH 

    Google Scholar
     

  • Kain, J. S. The Kain–Fritsch convective parameterization: an update. J. Appl. Meteorol. Climatol. 43, 170–181 (2004).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Hong, S.-Y., Noh, Y. & Dudhia, J. A New vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134, 2318–2341 (2006).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. & Clough, S. A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 102, 16663–16682 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 46, 3077–3107 (1989).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Jiménez, P. A. et al. A revised scheme for the WRF surface layer formulation. Mon. Weather Rev. 140, 898–918 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Jin, J. & Wen, L. Evaluation of snowmelt simulation in the Weather Research and Forecasting model. J. Geophys. Res. 117, D10110 (2012).

    ADS 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments