Thursday, March 6, 2025
No menu items!
HomeNatureFingerprinting the recovery of Antarctic ozone

Fingerprinting the recovery of Antarctic ozone

  • Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207–210 (1985).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. On the depletion of Antarctic ozone. Nature 321, 755–758 (1986).

    Article 
    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Laube, J. C. & Tegtmeier, S. in Scientific Assessment of Ozone Depletion: 2022 Ch. 1 51–114 (World Meteorological Organization, 2022).

  • Chipperfield, M. P. & Santee, M. L. in Scientific Assessment of Ozone Depletion: 2022 Ch. 4 215–270 (World Meteorological Organization, 2022).

  • Santer, B. D. et al. Exceptional stratospheric contribution to human fingerprints on atmospheric temperature. Proc. Natl Acad. Sci. 120, e2300758120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Terray, L. et al. Near-surface salinity as nature’s rain gauge to detect human influence on the tropical water cycle. J. Clim. 25, 958–977 (2012).

    Article 
    MATH 
    ADS 

    Google Scholar
     

  • Stott, P. A., Sutton, R. T. & Smith, D. M. Detection and attribution of Atlantic salinity changes. Geophys. Res. Lett. 35, L21702 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Gillett, N. P., Fyfe, J. C. & Parker, D. E. Attribution of observed sea level pressure trends to greenhouse gas, aerosol, and ozone changes. Geophys. Res. Lett. 40, 2302–2306 (2013).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Christidis, N. & Stott, P. A. Changes in the geopotential height at 500 hPa under the influence of external climatic forcings. Geophys. Res. Lett. 42, 10,798–10,806 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Shi, J.-R., Santer, B. D., Kwon, Y.-O. & Wijffels, S. E. The emerging human influence on the seasonal cycle of sea surface temperature. Nat. Clim. Change 14, 364–372 (2024).

    Article 
    MATH 
    ADS 

    Google Scholar
     

  • Santer, B. D. et al. Robust anthropogenic signal identified in the seasonal cycle of tropospheric temperature. J. Clim. 35, 6075–6100 (2022).

    Article 
    MATH 
    ADS 

    Google Scholar
     

  • Hasselmann, K. Optimal fingerprints for the detection of time-dependent climate change. J. Clim. 6, 1957–1971 (1993).

    Article 
    MATH 
    ADS 

    Google Scholar
     

  • Santee, M. L. et al. Prolonged and pervasive perturbations in the composition of the Southern Hemisphere midlatitude lower stratosphere from the Australian New Year’s fires. Geophys. Res. Lett. 49, e2021GL096270 (2022).

    Article 
    MATH 
    ADS 

    Google Scholar
     

  • Bernath, P., Boone, C. & Crouse, J. Wildfire smoke destroys stratospheric ozone. Science 375, 1292–1295 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Solomon, S. et al. Chlorine activation and enhanced ozone depletion induced by wildfire aerosol. Nature 615, 259–264 (2023).

    Article 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Wang, X. et al. Stratospheric climate anomalies and ozone loss caused by the Hunga Tonga-Hunga Ha’apai volcanic eruption. J. Geophys. Res. Atmos. 128, e2023JD039480 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, J. et al. Chemistry contribution to stratospheric ozone depletion after the unprecedented water-rich Hunga Tonga eruption. Geophys. Res. Lett. 51, e2023GL105762 (2024).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Wohltmann, I., Santee, M. L., Manney, G. L. & Millán, L. F. The chemical effect of increased water vapor from the Hunga Tonga-Hunga Ha’apai eruption on the Antarctic ozone hole. Geophys. Res. Lett. 51, e2023GL106980 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Manney, G. L. et al. Siege in the southern stratosphere: Hunga Tonga-Hunga Ha’apai water vapor excluded from the 2022 Antarctic polar vortex. Geophys. Res. Lett. 50, e2023GL103855 (2023).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Kessenich, H. E., Seppälä, A. & Rodger, C. J. Potential drivers of the recent large Antarctic ozone holes. Nat. Commun. 14, 7259 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar
     

  • Hassler, B. & Young, P. J. in Scientific Assessment of Ozone Depletion: 2022 Ch. 3 153–214 (World Meteorological Organization, 2022).

  • Santer, B. D. et al. Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. J. Geophys. Res. Atmos. 106, 28033–28059 (2001).

    Article 
    MATH 
    ADS 

    Google Scholar
     

  • Dhomse, S. S. et al. Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmos. Chem. Phys. 18, 8409–8438 (2018).

    Article 
    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Zeng, G. et al. Attribution of stratospheric and tropospheric ozone changes between 1850 and 2014 in CMIP6 models. J. Geophys. Res. Atmos. 127, e2022JD036452 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Robertson, F. et al. Signal-to-noise calculations of emergence and de-emergence of stratospheric ozone depletion. Geophys. Res. Lett. 50, e2023GL104246 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).

    Article 
    MATH 
    ADS 

    Google Scholar
     

  • Waters, J. W. et al. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens. 44, 1075–1092 (2006).

    Article 
    MATH 
    ADS 

    Google Scholar
     

  • Morgenstern, O. et al. Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geosci. Model Dev. 10, 639–671 (2017).

    Article 
    MATH 
    ADS 

    Google Scholar
     

  • Marsh, D. R. et al. Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Clim. 26, 7372–7391 (2013).

    Article 
    MATH 
    ADS 

    Google Scholar
     

  • Garcia, R. R., Smith, A. K., Kinnison, D. E., de la Cámara, Á. & Murphy, D. J. Modification of the gravity wave parameterization in the Whole Atmosphere Community Climate Model: motivation and results. J. Atmos. Sci. 74, 275–291 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wargan, K., Weir, B., Manney, G. L., Cohn, S. E. & Livesey, N. J. The anomalous 2019 Antarctic ozone hole in the GEOS Constituent Data Assimilation System with MLS observations. J. Geophys. Res. Atmos. 125, e2020JD033335 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Solomon, S. et al. Emergence of healing in the Antarctic ozone layer. Science 353, 269–274 (2016).

    Article 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Manabe, S. & Wetherald, R. T. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241–259 (1967).

    Article 
    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Haigh, J. D. & Pyle, J. A. Ozone perturbation experiments in a two-dimensional circulation model. Q. J. R. Meteorol. Soc. 108, 551–574 (1982).

    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Molina, M. J. & Rowland, F. S. Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249, 810–812 (1974).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Solomon, S., Portmann, R. W., Sasaki, T. & Hofman, D. J. Four decades of ozonesonde measurements over Antarctica. J. Geophys. Res. Atmos. 110, D21311 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Levelt, P. F. et al. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 44, 1093–1101 (2006).

    Article 
    MATH 
    ADS 

    Google Scholar
     

  • Schoeberl, M. R. & Hartmann, D. L. The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science 251, 46–52 (1991).

    Article 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).

    Article 
    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Zhou, X. et al. Antarctic vortex dehydration in 2023 as a substantial removal pathway for Hunga Tonga-Hunga Ha’apai water vapor. Geophys. Res. Lett. 51, e2023GL107630 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Eric Klobas, J., Wilmouth, D. M., Weisenstein, D. K., Anderson, J. G. & Salawitch, R. J. Ozone depletion following future volcanic eruptions. Geophys. Res. Lett. 44, 7490–7499 (2017).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Chim, M. M. et al. Climate projections very likely underestimate future volcanic forcing and its climatic effects. Geophys. Res. Lett. 50, e2023GL103743 (2023).

    Article 
    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Revell, L. E., Bodeker, G. E., Huck, P. E., Williamson, B. E. & Rozanov, E. The sensitivity of stratospheric ozone changes through the 21st century to N2O and CH4. Atmos. Chem. Phys. 12, 11309–11317 (2012).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Stone, K. A., Solomon, S. & Kinnison, D. E. On the identification of ozone recovery. Geophys. Res. Lett. 45, 5158–5165 (2018).

    Article 
    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Chipperfield, M. P. & Bekki, S. Opinion: Stratospheric ozone – depletion, recovery and new challenges. Atmos. Chem. Phys. 24, 2783–2802 (2024).

    Article 
    MATH 
    ADS 

    Google Scholar
     

  • Hubert, D. et al. Ground-based assessment of the bias and long-term stability of 14 limb and occultation ozone profile data records. Atmos. Meas. Tech. 9, 2497–2534 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar
     

  • Froidevaux, L. et al. Validation of Aura Microwave Limb Sounder stratospheric ozone measurements. J. Geophys. Res. Atmos. 113, D15S20 (2008).

    MATH 
    ADS 

    Google Scholar
     

  • World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 2010 (World Meteorological Organization, 2011).

  • Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213 (2011).

    Article 
    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Stone, K. A., Solomon, S., Thompson, D. W. J., Kinnison, D. E. & Fyfe, J. C. On the Southern Hemisphere stratospheric response to ENSO and its impacts on tropospheric circulation. J. Clim. 35, 1963–1981 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    Article 
    MATH 
    ADS 

    Google Scholar
     

  • Solomon, A. et al. Distinguishing the roles of natural and anthropogenically forced decadal climate variability: implications for prediction. Bull. Am. Meteorol. Soc. 92, 141–156 (2011).

    Article 
    MATH 
    ADS 

    Google Scholar
     

  • Manney, G. L. et al. Solar occultation satellite data and derived meteorological products: sampling issues and comparisons with Aura Microwave Limb Sounder. J. Geophys. Res. Atmos. 112, D24S50 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Millán, L. F. et al. Multi-parameter dynamical diagnostics for upper tropospheric and lower stratospheric studies. Atmos. Meas. Tech. 16, 2957–2988 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Manney, G. L. et al. Jet characterization in the upper troposphere/lower stratosphere (UTLS): applications to climatology and transport studies. Atmos. Chem. Phys. 11, 6115–6137 (2011).

    Article 
    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Lawrence, Z. D., Manney, G. L. & Wargan, K. Reanalysis intercomparisons of stratospheric polar processing diagnostics. Atmos. Chem. Phys. 18, 13547–13579 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Wang, P. et al. Data and code for “Fingerprinting the Recovery of Antarctic Ozone”. Zenodo https://doi.org/10.5281/zenodo.14497873 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments