Gidney, C. & Ekerå, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021).
Dalzell, A. M. et al. Quantum algorithms: a survey of applications and end-to-end complexities. Preprint at https://arxiv.org/abs/2310.03011 (2023).
Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).
Kitaev, A. Y. in Quantum Communication, Computing, and Measurement (eds Hirota, O. et al.), 181–188 (Springer, 1997).
Knill, E., Laflamme, R. & Zurek, W. H. Resilient quantum computation. Science 279, 342–345 (1998).
Cochrane, P. T., Milburn, G. J. & Munro, W. J. Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping. Phys. Rev. A 59, 2631–2634 (1999).
Aliferis, P. & Preskill, J. Fault-tolerant quantum computation against biased noise. Phys. Rev. A 78, 052331 (2008).
Fukui, K., Tomita, A. & Okamoto, A. Analog quantum error correction with encoding a qubit into an oscillator. Phys. Rev. Lett. 119, 180507 (2017).
Tuckett, D. K., Bartlett, S. D. & Flammia, S. T. Ultrahigh error threshold for surface codes with biased noise. Phys. Rev. Lett. 120, 050505 (2018).
Guillaud, J. & Mirrahimi, M. Repetition cat qubits for fault-tolerant quantum computation. Phys. Rev. X 9, 041053 (2019).
Puri, S. et al. Bias-preserving gates with stabilized cat qubits. Sci. Adv. 6, eaay5901 (2020).
Guillaud, J. & Mirrahimi, M. Error rates and resource overheads of repetition cat qubits. Phys. Rev. A 103, 042413 (2021).
Darmawan, A. S., Brown, B. J., Grimsmo, A. L., Tuckett, D. K. & Puri, S. Practical quantum error correction with the xzzx code and kerr-cat qubits. PRX Quantum 2, 030345 (2021).
Bonilla Ataides, J. P., Tuckett, D. K., Bartlett, S. D., Flammia, S. T. & Brown, B. J. The xzzx surface code. Nat. Commun. 12, 2172 (2021).
Chamberland, C. et al. Building a fault-tolerant quantum computer using concatenated cat codes. PRX Quantum 3, 010329 (2022).
Régent, F.-M.Le, Berdou, C., Leghtas, Z., Guillaud, J. & Mirrahimi, M. High-performance repetition cat code using fast noisy operations. Quantum 7, 1198 (2023).
Gouzien, E., Ruiz, D., Le Régent, F.-M., Guillaud, J. & Sangouard, N. Performance analysis of a repetition cat code architecture: Computing 256-bit elliptic curve logarithm in 9 hours with 126 133 cat qubits. Phys. Rev. Lett. 131, 040602 (2023).
Ruiz, D., Guillaud, J., Leverrier, A., Mirrahimi, M. & Vuillot, C. LDPC-cat codes for low-overhead quantum computing in 2D. Nat. Commun. 16, 1040 (2025).
Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).
Mirrahimi, M. et al. Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New J. Phys. 16, 045014 (2014).
Leghtas, Z. et al. Confining the state of light to a quantum manifold by engineered two-photon loss. Science 347, 853–857 (2015).
Touzard, S. et al. Coherent oscillations inside a quantum manifold stabilized by dissipation. Phys. Rev. X 8, 021005 (2018).
Lescanne, R. et al. Exponential suppression of bit-flips in a qubit encoded in an oscillator. Nat. Phys. 16, 509–513 (2020).
Putterman, H. et al. Preserving phase coherence and linearity in cat qubits with exponential bit-flip suppression. Preprint at https://arxiv.org/abs/2409.17556 (2024).
Krinner, S. et al. Realizing repeated quantum error correction in a distance-three surface code. Nature 605, 669–674 (2022).
Google Qunatum AI et al. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023).
Sundaresan, N. et al. Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders. Nat. Commun. 14, 2852 (2023).
Google Quantum AI and Collaborators. Quantum error correction below the surface code threshold. Nature https://doi.org/10.1038/s41586-024-08449-y (2024).
Egan, L. et al. Fault-tolerant control of an error-corrected qubit. Nature 598, 281–286 (2021).
Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).
Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).
Jeong, H. & Kim, M. S. Efficient quantum computation using coherent states. Phys. Rev. A 65, 042305 (2002).
Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).
Berdou, C. et al. One hundred second bit-flip time in a two-photon dissipative oscillator. PRX Quantum 4, 020350 (2023).
Réglade, U. et al. Quantum control of a cat qubit with bit-flip times exceeding ten seconds. Nature 629, 778–783 (2024).
Ni, Z. et al. Beating the break-even point with a discrete-variable-encoded logical qubit. Nature 616, 56–60 (2023).
Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).
Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020).
Sivak, V. V. et al. Real-time quantum error correction beyond break-even. Nature 616, 50–55 (2023).
Xu, Q., Zeng, P., Xu, D. & Jiang, L. Fault-tolerant operation of bosonic qubits with discrete-variable ancillae. Phys. Rev. X 14, 031016 (2024).
Yan, F. et al. Tunable coupling scheme for implementing high-fidelity two-qubit gates. Phys. Rev. Appl. 10, 054062 (2018).
Sung, Y. et al. Realization of high-fidelity cz and zz-free iSWAP gates with a tunable coupler. Phys. Rev. X 11, 021058 (2021).
Walter, T. et al. Rapid high-fidelity single-shot dispersive readout of superconducting qubits. Phys. Rev. Appl. 7, 054020 (2017).
Magnard, P. et al. Fast and unconditional all-microwave reset of a superconducting qubit. Phys. Rev. Lett. 121, 060502 (2018).
Lutterbach, L. G. & Davidovich, L. Method for direct measurement of the Wigner function in cavity QED and ion traps. Phys. Rev. Lett. 78, 2547–2550 (1997).
Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007).
Leghtas, Z. et al. Hardware-efficient autonomous quantum memory protection. Phys. Rev. Lett. 111, 120501 (2013).
Sun, L. et al. Tracking photon jumps with repeated quantum non-demolition parity measurements. Nature 511, 444–448 (2014).
Rosenblum, S. et al. Fault-tolerant detection of a quantum error. Science 361, 266–270 (2018).
Reinhold, P. et al. Error-corrected gates on an encoded qubit. Nat. Phys. 16, 822–826 (2020).
Ma, W.-L. et al. Path-independent quantum gates with noisy ancilla. Phys. Rev. Lett. 125, 110503 (2020).
Higgott, O. & Gidney, C. Pymatching v.2. GitHub https://github.com/oscarhiggott/PyMatching (2022).
Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).
Google Quantum AI Exponential suppression of bit or phase errors with cyclic error correction. Nature 595, 383–387 (2021).
Miao, K. C. et al. Overcoming leakage in quantum error correction. Nat. Phys. 19, 1780–1786 (2023).
Lacroix, N. et al. Fast flux-activated leakage reduction for superconducting quantum circuits. Preprint at https://arxiv.org/abs/2309.07060 (2023).
Bennett, C. H., DiVincenzo, D. P. & Smolin, J. A. Capacities of quantum erasure channels. Phys. Rev. Lett. 78, 3217–3220 (1997).
Grassl, M., Beth, T. & Pellizzari, T. Codes for the quantum erasure channel. Phys. Rev. A 56, 33–38 (1997).
Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002).
Hann, C. T. et al. Hybrid cat-transmon architecture for scalable, hardware-efficient quantum error correction. Preprint at https://arxiv.org/abs/2410.23363 (2024).
Cohen, J., Smith, W. C., Devoret, M. H. & Mirrahimi, M. Degeneracy-preserving quantum nondemolition measurement of parity-type observables for cat qubits. Phys. Rev. Lett. 119, 060503 (2017).
Xu, Q. et al. Autonomous quantum error correction and fault-tolerant quantum computation with squeezed cat qubits. npj Quantum Inf. 9, 78 (2023).
Gautier, R., Mirrahimi, M. & Sarlette, A. Designing high-fidelity zeno gates for dissipative cat qubits. PRX Quantum 4, 040316 (2023).
Place, A. P. M. et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun. 12, 1779 (2021).
Reagor, M. et al. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B 94, 014506 (2016).
Putterman, H. Data from “Hardware-efficient quantum error correction using concatenated bosonic qubits”. Zenodo https://doi.org/10.5281/zenodo.14257632 (2024).