Thursday, February 27, 2025
No menu items!
HomeNatureAchieving kilowatt-scale elastocaloric cooling by a multi-cell architecture

Achieving kilowatt-scale elastocaloric cooling by a multi-cell architecture

  • Hou, H., Qian, S. & Takeuchi, I. Materials, physics and systems for multicaloric cooling. Nat. Rev. Mater. 7, 633–652 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Abas, N. et al. Natural and synthetic refrigerants, global warming: a review. Renew. Sustain. Energy Rev. 90, 557–569 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Qian, S. et al. High-performance multimode elastocaloric cooling system. Science 380, 722–727 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhou, G., Zhu, Y., Yao, S. & Sun, Q. Giant temperature span and cooling power in elastocaloric regenerator. Joule 7, 2003–2015 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Ghaddar, N. et al. Sustainable cooling solutions. One Earth 7, 1315–1319 (2024).

    Article 
    MATH 

    Google Scholar
     

  • Esper, J. Torbenso, M. & Büntgen, U. 2023 summer warmth unparalleled over the past 2,000 years. Nature 631, 94–97 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • International Energy Agency (IEA). The Future of Cooling: Opportunities for Energy-Efficient Air Conditioning (OECD/IEA, 2018).

  • Garimella, S. et al. Realistic pathways to decarbonization of building energy systems. Joule 6, 956–971 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Aphornratana, S. & Sriveerakul, T. Analysis of a combined Rankine–vapour–compression refrigeration cycle. Energy Convers. Manage. 51, 2557–2564 (2010).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Mañosa, L. & Planes, A. Materials with giant mechanocaloric effects: cooling by strength. Adv. Mater. 29, 1603607 (2017).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Rare-earth-free Mn30Fe20-xCuxAl50 magnetocaloric materials with stable cubic CsCl-type structure for room-temperature refrigeration. Adv. Funct. Mater. 33, 2310047 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Han, D. et al. Molecular interface regulation enables order-disorder synergy in electrocaloric nanocomposites. Joule 7, 2174–2190 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Cui, J. et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl. Phys. Lett. 101, 073904 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Jacobs, S. et al. The performance of a large-scale rotary magnetic refrigerator. Int. J. Refrig. 37, 84–91 (2014).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Balli, M. et al. A pre-industrial magnetic cooling system for room temperature application. Appl. Energy 98, 556–561 (2012).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Franco, V. et al. Magnetocaloric effect: from materials research to refrigeration devices. Prog. Mater Sci. 93, 112–232 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Mañosa, L. & Planes, A. Solid-state cooling by stress: a perspective. Appl. Phys. Lett. 116, 050501 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Cazorla, C. Novel mechanocaloric materials for solid-state cooling applications. Appl. Phys. Rev. 6, 041316 (2019).

    Article 

    Google Scholar
     

  • Zhao, D. et al. Subambient cooling of water: toward real-world applications of daytime radiative cooling. Joule 3, 111–123 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Pattanaik, M. et al. A self-regulating multi-torus magneto-fluidic device for kilowatt level cooling. Energy Convers. Manage. 198, 111819 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bruederlin, F. et al. Elastocaloric cooling on the miniature scale: a review on materials and device engineering. Energy Technol. 6, 1588–1604 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Bruederlin, F. et al. SMA foil-based elastocaloric cooling: from material behavior to device engineering. J. Phys. D Appl. Phys. 50, 424003 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Greibich, F. et al. Elastocaloric heat pump with specific cooling power of 20.9 W g−1 exploiting snap-through instability and strain-induced crystallization. Nat. Energy 6, 260–267 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ahčin, Z. et al. High-performance cooling and heat pumping based on fatigue-resistant elastocaloric effect in compression. Joule 6, 2338–2357 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tusek, J. et al. A regenerative elastocaloric heat pump. Nat. Energy 1, 16134 (2016).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Engelbrecht, K. et al. A regenerative elastocaloric device: experimental results. J. Phys. D Appl. Phys. 50, 424006 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Kabirifar, P., Trojer, J., Brojan, M. & Tušek, J. From the elastocaloric effect towards an efficient thermodynamic cycle. J. Phys. Energy 4, 044009 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Loulijat, H. & Moustabchir, H. A study of the effects of graphene nanosheets on the thermal conductivity of nanofluid (argon-graphene) using reverse nonequilibrium molecular dynamics method. Int. J. Thermophys. 42, 125 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pavia, M., Alajami, K., Estellé, P., Desforges, A. & Vigolo, B. A critical review on thermal conductivity enhancement of graphene-based nanofluids. Adv. Colloid Interface Sci. 294, 102452 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gupta, S. S. et al. Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J. Appl. Phys. 110, 084302 (2011).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Zhu, Y., Zhou, G., Cheng, S., Sun, Q. & Yao, S. A numerical study of elastocaloric regenerators of tubular structures. Appl. Energy 339, 120990 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Y. et al. Modelling of elastocaloric regenerators with enhanced heat transfer structures. Int. J. Heat Mass Transfer 176, 121372 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, G. et al. A multi-material cascade elastocaloric cooling device for large temperature lift. Nat. Energy 9, 862–870 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Velders, G. J. M. et al. Projections of hydrofluorocarbon (HFC) emissions and the resulting global warming based on recent trends in observed abundances and current policies. Atmos. Chem. Phys. 22, 6087–6101 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Kawarada, Y. et al. Abnormal grain growth of 68Cu-16Al-16Zn alloys for elastocaloric cooling via cyclical heat treatments. J. Phys. Energy 5, 024012 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Li, Y. et al. Energy-efficient elastocaloric cooling by flexibly and reversibly transferring interface in magnetic shape-memory alloys. ACS Appl. Mater. Interfaces 10, 25438–25445 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Solid-state cooling with high elastocaloric strength and low driving force via NiTi shape memory alloy helical springs: experiment and theoretical model. Mech. Mater. 178, 104575 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Hartquist, C. et al. An elastomer with ultrahigh strain-induced crystallization. Sci. Adv. 9, eadj0411 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Continuous and efficient elastocaloric air cooling by coil-bending. Nat. Commun. 14, 7982 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhang, K. et al. Interactions among phase transition, heat transfer and austenite plasticity in cyclic compression of NiTi shape memory alloys: effect of loading frequency. J. Mech. Phys. Solids 191, 105782 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Yin, H., He, Y. & Sun, Q. Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy. J. Mech. Phys. Solids 67, 100–128 (2014).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Deng, Y. et al. Low-melting-point liquid metal convective heat transfer: a review. Appl. Therm. Eng. 193, 117021 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yao, S. et al. Efficient roller-driven elastocaloric refrigerator. Nat. Commun. 15, 7203 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michaelis, N., Schütze, A., Welsch, F., Kirsch, S.-M. & Seelecke, S. Novel experimental approach to determine elastocaloric latent heat. Shap. Mem. Superelasticity 5, 352–361 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Kirsch, S.-M. et al. NiTi-based elastocaloric cooling on the macroscale: from basic concepts to realization. Energy Technol. 6, 1567 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Louia, F., Michaelis, N., Schütze, A., Seelecke, S. & Motzki, P. A unified approach to thermo-mechano-caloric-characterization of elastocaloric materials. J. Phys. Energy 5, 045014 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, J., Zhu, Y., Cheng, S., Yao, S. & Sun, Q. Effect of inactive section on cooling performance of compressive elastocaloric refrigeration prototype. Appl. Energy 351, 121839 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, K., Kang, G. & Sun, Q. High fatigue life and cooling efficiency of NiTi shape memory alloy under cyclic compression. Scr. Mater. 159, 62–67 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Qian, S., Yuan, L., Yu, J. & Yan, G. et al. Numerical modeling of an active elastocaloric regenerator refrigerator with phase transformation kinetics and the matching principle for materials selection. Energy 141, 744–756 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Yuan, L., Liu, Y., Yu, J. & Qian, S. Experimental study on cooling performance of active magnetic regenerators with different structures. Int. J. Refrig. 153, 184–193 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Zhang, J., Zhu, Y., Yao, S. & Sun, Q. Highly efficient grooved NiTi tube refrigerants for compressive elastocaloric cooling. Appl. Therm. Eng. 228, 120439 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Liang, D. et al. Ultrahigh cycle fatigue of nanocrystalline NiTi tubes for elastocaloric cooling. Appl. Mater. Today 26, 101377 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Xiao, F., Bucsek, A., Jin, X., Porta, M. & Planes, A. Giant elastic response and ultra-stable elastocaloric effect in tweed textured Fe-Pd single crystals. Acta Mater. 223, 117486 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H. et al. Giant elastocaloric effect and improved cyclic stability in a directionally solidified (Ni50Mn31Ti19)99B1 alloy. Materials 17, 4756 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dang, P. et al. Low-fatigue and large room-temperature elastocaloric effect in a bulk Ti49.2Ni40.8Cu10 alloy. Acta Mater. 229, 117802 (2022).

    Article 
    CAS 

    Google Scholar
     

  • EngineersIreland. The L12 heat pump by Exergyn. https://www.youtube.com/watch?v=pklqEtP5k-c (YouTube, 2021).

  • Unmüßig, S., Burghardt, A., Schäfer-Welsen, O. & Bartholomé, K. Highly efficient drive system for elastocaloric heat pumps and cooling systems. Shap. Mem. Superelasticity 10, 177–188 (2024).

    Article 

    Google Scholar
     

  • Zhang, J., Cheng, S. & Sun, Q. Roller-cam-driven compressive elastocaloric device with high cooling power density. Device https://doi.org/10.1016/j.device.2024.100677 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments