Brown, T. L. et al. Chemistry: The Central Science (Pearson, 2015).
Oxtoby, D. W., Gillis, H. P. & Butler, L. J. Principles of Modern Chemistry (Cengage Learning, 2016).
Kouwenhoven, L. P., Austing, D. G. & Tarucha, S. Few-electron quantum dots. Rep. Prog. Phys. 64, 701–736 (2001).
Reimann, S. M. & Manninen, M. Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1283–1342 (2002).
Buluta, I., Ashhab, S. & Nori, F. Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011).
Ashoori, R. C. Electrons in artificial atoms. Nature 379, 413–419 (1996).
Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).
Karrai, K. et al. Hybridization of electronic states in quantum dots through photon emission. Nature 427, 135–138 (2004).
Schedelbeck, G., Wegscheider, W., Bichler, M. & Abstreiter, G. Coupled quantum dots fabricated by cleaved edge overgrowth: from artificial atoms to molecules. Science 278, 1792–1795 (1997).
Oosterkamp, T. H. et al. Microwave spectroscopy of a quantum-dot molecule. Nature 395, 873–876 (1998).
Bayer, M. et al. Coupling and entangling of quantum states in quantum dot molecules. Science 291, 451–453 (2001).
Krenner, H. J. et al. Direct observation of controlled coupling in an individual quantum dot molecule. Phys. Rev. Lett. 94, 057402 (2005).
Rodary, G. et al. Real space observation of electronic coupling between self-assembled quantum dots. Nano Lett. 19, 3699–3706 (2019).
Fu, Z.-Q. et al. Relativistic artificial molecules realized by two coupled graphene quantum dots. Nano Lett. 20, 6738–6743 (2020).
Dou, W. et al. High-yield production of quantum corrals in a surface reconstruction pattern. Nano Lett. 23, 148–154 (2023).
Ge, Z. et al. Giant orbital magnetic moments and paramagnetic shift in artificial relativistic atoms and molecules. Nat. Nanotechnol. 18, 250–256 (2023).
Zheng, Q. et al. Molecular collapse states in graphene/WSe2 heterostructure quantum dots. Phys. Rev. Lett. 130, 076202 (2023).
Silvestrov, P. G. & Efetov, K. B. Quantum dots in graphene. Phys. Rev. Lett. 98, 016802 (2007).
Pereira, V. M., Nilsson, J. & Castro Neto, A. H. Coulomb impurity problem in graphene. Phys. Rev. Lett. 99, 166802 (2007).
Matulis, A. & Peeters, F. M. Quasibound states of quantum dots in single and bilayer graphene. Phys. Rev. B 77, 115423 (2008).
Wang, Y. et al. Observing atomic collapse resonances in artificial nuclei on graphene. Science 340, 734–737 (2013).
Zhao, Y. et al. Creating and probing electron whispering-gallery modes in graphene. Science 348, 672–675 (2015).
Freitag, N. M. et al. Electrostatically confined monolayer graphene quantum dots with orbital and valley splittings. Nano Lett. 16, 5798–5805 (2016).
Gutiérrez, C., Brown, L., Kim, C.-J., Park, J. & Pasupathy, A. N. Klein tunnelling and electron trapping in nanometre-scale graphene quantum dots. Nat. Phys. 12, 1069–1075 (2016).
Lee, J. et al. Imaging electrostatically confined Dirac fermions in graphene quantum dots. Nat. Phys. 12, 1032–1036 (2016).
Ghahari, F. et al. An on/off Berry phase switch in circular graphene resonators. Science 356, 845–849 (2017).
Jiang, Y. et al. Tuning a circular p–n junction in graphene from quantum confinement to optical guiding. Nat. Nanotech. 12, 1045–1049 (2017).
Bai, K.-K. et al. Generating atomically sharp p–n junctions in graphene and testing quantum electron optics on the nanoscale. Phys. Rev. B 97, 045413 (2018).
Gutiérrez, C. et al. Interaction-driven quantum Hall wedding cake-like structures in graphene quantum dots. Science 361, 789–794 (2018).
Zheng, Q., Zhuang, Y.-C., Sun, Q.-F. & He, L. Coexistence of electron whispering-gallery modes and atomic collapse states in graphene/WSe2 heterostructure quantum dots. Nat. Commun. 13, 1597 (2022).
Ren, H.-Y., Ren, Y.-N., Zheng, Q., He, J.-Q. & He, L. Electron-electron interaction and correlation-induced two density waves with different Fermi velocities in graphene quantum dots. Phys. Rev. B 108, L081408 (2023).
Ren, H.-Y., Mao, Y., Ren, Y.-N., Sun, Q.-F. & He, L. Tunable quantum confinement in individual nanoscale quantum dots via interfacial engineering. ACS Nano 19, 1352–1360 (2025).
Zhang, J. et al. Double quantum dots in atomically-precise graphene nanoribbons. Mater. Quantum. Technol. 3, 036201 (2023).
Banszerus, L. et al. Single-electron double quantum dots in bilayer graphene. Nano Lett. 20, 2005–2011 (2020).
Garreis, R. et al. Long-lived valley states in bilayer graphene quantum dots. Nat. Phys. 20, 428–434 (2024).
Tong, C. et al. Pauli blockade of tunable two-electron spin and valley states in graphene quantum dots. Phys. Rev. Lett. 128, 067702 (2022).
Yang, H., Kim, S. W., Chhowalla, M. & Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 13, 931–937 (2017).
Wang, R. et al. Strategies on phase control in transition metal dichalcogenides. Adv. Funct. Mater. 28, 1802473 (2018).
Huang, H. H., Fan, X., Singh, D. J. & Zheng, W. T. Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale 12, 1247–1268 (2020).
Yin, X. et al. Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-)metallic phases. Chem. Soc. Rev. 50, 10087–10115 (2021).
Ren, Y.-N. et al. In situ creation and tailoring of interfacial quantum dots in graphene/transition metal dichalcogenide heterostructures. Phys. Rev. B 110, 125416 (2024).
Zhou, X.-F. et al. Relativistic artificial molecule of two coupled graphene quantum dots at tunable distances. Nat. Commun. 15, 8786 (2024).
Shytov, A. V., Katsnelson, M. I. & Levitov, L. S. Atomic collapse and quasi-Rydberg states in graphene. Phys. Rev. Lett. 99, 246802 (2007).
Moldovan, D., Masir, M. R. & Peeters, F. M. Magnetic field dependence of the atomic collapse state in graphene. 2D Mater. 5, 015017 (2017).
Morgenstern, M. et al. Origin of Landau oscillations observed in scanning tunneling spectroscopy on n-InAs(110). Phys. Rev. B 62, 7257–7263 (2000).