Saturday, February 22, 2025
No menu items!
HomeNatureGlobal modules robustly emerge from local interactions and smooth gradients

Global modules robustly emerge from local interactions and smooth gradients

  • Thouless, D. Topological Quantum Numbers in Nonrelativistic Physics (World Scientific, 1998).

  • Sales-Pardo, M. The importance of being modular. Science 357, 128–129 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chen, G., Kang, B., Lindsey, J., Druckmann, S. & Li, N. Modularity and robustness of frontal cortical networks. Cell 184, 3717–3730 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Park, J.-M., Chen, M., Wang, D. & Deem, M. W. Modularity enhances the rate of evolution in a rugged fitness landscape. Phys. Biol. 12, 025001 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • von Humboldt, W. On the Diversity of Human Language Construction and its Influence on the Mental Development of the Human Species (Cambridge Univ. Press, 2005).

  • Fiete, I. R., Burak, Y. & Brookings, T. What grid cells convey about rat location. J. Neurosci. 28, 6858–6871 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Green, J. B. A. & Sharpe, J. Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development 142, 1203–1211 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Durrieu, L. et al. Bicoid gradient formation mechanism and dynamics revealed by protein lifetime analysis. Mol. Syst. Biol. 14, e8355 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R Soc. Lond. B 237, 37–72 (1952).

  • Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yoon, K. J. et al. Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nat. Neurosci. 16, 1077–1084 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gu, Y. et al. A map-like micro-organization of grid cells in the medial entorhinal cortex. Cell 175, 736–750 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Trettel, S. G., Trimper, J. B., Hwaun, E., Fiete, I. R. & Colgin, L. L. Grid cell co-activity patterns during sleep reflect spatial overlap of grid fields during active behaviors. Nat. Neurosci. 22, 609–617 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner, R. J., Lu, L., Wernle, T., Moser, M.-B. & Moser, E. I. Correlation structure of grid cells is preserved during sleep. Nat. Neurosci. 22, 598–608 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Nature 602, 123–128 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Khona, M. & Fiete, I. R. Attractor and integrator networks in the brain. Nat. Rev. Neurosci. 23, 744–766 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Burak, Y. & Fiete, I. R. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 5, e1000291 (2009).

    Article 
    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Schweisguth, F. & Corson, F. Self-organization in pattern formation. Dev. Cell 49, 659–677 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gregor, T., Tank, D. W., Wieschaus, E. F. & Bialek, W. Probing the limits to positional information. Cell 130, 153–164 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wang, X.-J. Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat. Rev. Neurosci. 21, 169–178 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Beed, P. et al. Inhibitory gradient along the dorsoventral axis in the medial entorhinal cortex. Neuron 79, 1197–1207 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pastoll, H., Garden, D. L., Papastathopoulos, I., Sürmeli, G. & Nolan, M. F. Inter- and intra-animal variation in the integrative properties of stellate cells in the medial entorhinal cortex. eLife 9, e52258 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fulcher, B. D., Murray, J. D., Zerbi, V. & Wang, X.-J. Multimodal gradients across mouse cortex. Proc. Natl Acad. Sci. USA 116, 4689–4695 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garden, D. L. F., Dodson, P. D., O’Donnell, C., White, M. D. & Nolan, M. F. Tuning of synaptic integration in the medial entorhinal cortex to the organization of grid cell firing fields. Neuron 60, 875–889 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grosser, S. et al. Parvalbumin interneurons are differentially connected to principal cells in inhibitory feedback microcircuits along the dorsoventral axis of the medial entorhinal cortex. eNeuro 8, ENEURO.0354-20.2020 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • BRAIN Initiative Cell Census Network (BICCN). A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021).

    Article 

    Google Scholar
     

  • Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Guanella, A., Kiper, D. & Verschure, P. A model of grid cells based on a twisted torus topology. Int. J. Neural Syst. 17, 231–240 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Couey, J. J. et al. Recurrent inhibitory circuitry as a mechanism for grid formation. Nat. Neurosci. 16, 318–324 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stensola, H. et al. The entorhinal grid map is discretized. Nature 492, 72–78 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Giocomo, L. M., Zilli, E. A., Fransén, E. & Hasselmo, M. E. Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315, 1719–1722 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Wei, X.-X., Prentice, J. & Balasubramanian, V. A principle of economy predicts the functional architecture of grid cells. eLife 4, e08362 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stemmler, M., Mathis, A. & Herz, A. V. M. Connecting multiple spatial scales to decode the population activity of grid cells. Sci. Adv. 1, e1500816 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Banino, A. et al. Vector-based navigation using grid-like representations in artificial agents. Nature 557, 429–433 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Giocomo, L. M. et al. Grid cells use hcn1 channels for spatial scaling. Cell 147, 1159–1170 (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tukker, J. J. et al. Microcircuits for spatial coding in the medial entorhinal cortex. Physiol. Rev. 102, 653–688 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhang, K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16, 2112–2126 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Burak, Y. & Fiete, I. Do we understand the emergent dynamics of grid cell activity? J. Neurosci. 26, 9352–9354 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kang, L. & Balasubramanian, V. A geometric attractor mechanism for self-organization of entorhinal grid modules. eLife 8, 8 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Power, D. A. et al. What can ecosystems learn? Expanding evolutionary ecology with learning theory. Biol. Direct 10, 69 (2015).

  • Turelli, M. Niche overlap and invasion of competitors in random environments. I. Models without demographic stochasticity. Theor. Pop. Biol. 20, 1–56 (1981).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Schellenberger Costa, D. et al. Plant niche breadths along environmental gradients and their relationship to plant functional traits. Divers. Distrib. 24, 1869–1882 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Salas-López, A., Violle, C., Munoz, F., Menzel, F. & Orivel, J. Effects of habitat and competition on niche partitioning and community structure in neotropical ants. Front. Ecol. Evol. 10, 863080 (2022).

  • Conway, M. Niche Evolution Along a Gradient of Ecological Specialization (Univ. of Maine, 2019).

  • Lin, C.-H., Takahashi, S., Mulla, A. J. & Nozawa, Y. Moonrise timing is key for synchronized spawning in coral Dipsastraea speciosa. Proc. Natl Acad. Sci. USA 118, e2101985118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaniewska, P., Alon, S., Karako-Lampert, S., Hoegh-Guldberg, O. & Levy, O. Signaling cascades and the importance of moonlight in coral broadcast mass spawning. eLife 4, e09991 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keith, S. A. et al. Coral mass spawning predicted by rapid seasonal rise in ocean temperature. Proc. R. Soc. B 283, 20160011 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Heys, J. G., Rangarajan, K. V. & Dombeck, D. A. The functional micro-organization of grid cells revealed by cellular-resolution imaging. Neuron 84, 1079–1090 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X.-J. Theory of the multiregional neocortex: large-scale neural dynamics and distributed cognition. Ann. Rev. Neurosci. 45, 533–560 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Vázquez-Rodríguez, B. et al. Gradients of structure–function tethering across neocortex. Proc. Natl Acad. Sci. USA 116, 21219–21227 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson, L. & Maden, M. The mechanisms of dorsoventral patterning in the vertebrate neural tube. Dev. Biol. 282, 1–13 (2005).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sun, J. & Deem, M. W. Spontaneous emergence of modularity in a model of evolving individuals. Phys. Rev. Lett. 99, 228107 (2007).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kashtan, N. & Alon, U. Spontaneous evolution of modularity and network motifs. Proc. Natl Acad. Sci. USA 102, 13773–13778 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Schaeffer, R. et al. Self-supervised learning of representations for space generates multi-modular grid cells. In Adv. Neural Info. Proc. Syst. (eds Oh, A. et al.) 36, 23140–23157 (Curran Associates, Inc., 2023).

  • Camley, B. A. Collective gradient sensing and chemotaxis: modeling and recent developments. J. Phys. Condens. Matter 30, 223001 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • St Johnston, D. & Nüsslein-Volhard, C. The origin of pattern and polarity in the Drosophila embryo. Cell 68, 201–219 (1992).

    Article 
    MATH 

    Google Scholar
     

  • Paddock, S. W., Hazen, E. J. & DeVries, P. J. Methods and applications of three-color confocal imaging. BioTechniques 22, 120–126 (1997).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Goldman, M. S., Compte, A. & Wang, X.-J. in Encyclopedia of Neuroscience (ed. Squire, L. R.) 165–178 (Academic, 2009).

  • Deneve, S., Latham, P. E. & Pouget, A. Reading population codes: a neural implementation of ideal observers. Nat. Neurosci. 2, 740–745 (1999).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Brunel, N. Is cortical connectivity optimized for storing information? Nat. Neurosci. 19, 749–755 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yoon, K. J., Lewallen, S., Kinkhabwala, A. A., Tank, D. W. & Fiete, I. R. Grid cell responses in 1D environments assessed as slices through a 2D lattice. Neuron 89, 1086–1099 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsodyks, M. V. & Feigelman, M. V. The enhanced storage capacity in neural networks with low activity level. Europhys. Lett. 6, 101–105 (1988).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments