Thursday, February 13, 2025
No menu items!
HomeNatureThe neuroimmune connectome in health and disease

The neuroimmune connectome in health and disease

  • Hašek, M., Chutna, J., Sládeček, M. & Lodin, Z. Immunological tolerance and tumor allografts in the brain. Nature 268, 68–69 (1977).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Medawar, P. B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58–69 (1948).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rustenhoven, J. & Kipnis, J. Brain borders at the central stage of neuroimmunology. Nature 612, 417–429 (2022).

  • Castellani, G., Croese, T., Peralta Ramos, J. M. & Schwartz, M. Transforming the understanding of brain immunity. Science 380, eabo7649 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Smyth, L. C. D. et al. Identification of direct connections between the dura and the brain. Nature 627, 165–173 (2024). This study was the first to describe bona fide conduits that convey peripheral molecules to the subarachnoid space adjoining the brain.

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fitzpatrick, Z. et al. Venous-plexus-associated lymphoid hubs support meningeal humoral immunity. Nature 628, 612–619 (2024). This study describes meningeal structures that facilitate humoral immunity to pathogens.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cugurra, A. et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science 373, eabf7844 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dani, N. et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184, 3056–3074 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kipnis, J. Immune system: the “seventh sense”. J. Exp. Med. 215, 397–398 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Steinman, L. Elaborate interactions between the immune and nervous systems. Nat. Immunol. 5, 575–581 (2004).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Charcot, J.-M. Histologie de la sclérose en plaques, leçon faite à l’hospice de la Salpêtrière. (Gaz. des Hôpitaux, 1869).

  • Lee, H.-G., Wheeler, M. A. & Quintana, F. J. Function and therapeutic value of astrocytes in neurological diseases. Nat. Rev. Drug Discov. 21, 339–358 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Charabati, M., Wheeler, M. A., Weiner, H. L. & Quintana, F. J. Multiple sclerosis: neuroimmune crosstalk and therapeutic targeting. Cell 186, 1309–1327 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010). This elegant study elucidated microglial developmental origins.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prinz, M., Masuda, T., Wheeler, M. A. & Quintana, F. J. Microglia and central nervous system-associated macrophages—from origin to disease modulation. Annu. Rev. Immunol. 39, 251–277 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Korn, T. & Kallies, A. T cell responses in the central nervous system. Nat. Rev. Immunol. 17, 179–194 (2017).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Monsonego, A. et al. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease. J. Clin. Invest. 112, 415–422 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gate, D. et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 577, 399–404 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chen, X. et al. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature 615, 668–677 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sulzer, D. et al. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 546, 656–661 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lodygin, D. et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature 566, 503–508 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, L. et al. Reversible CD8 T cell-neuron cross-talk causes aging-dependent neuronal regenerative decline. Science 376, eabd5926 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, H. et al. Synapse elimination and learning rules co-regulated by MHC class I H2-Db. Nature 509, 195–200 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Boulanger, L. M. & Shatz, C. J. Immune signalling in neural development, synaptic plasticity and disease. Nat. Rev. Neurosci. 5, 521–531 (2004).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Huh, G. S. et al. Functional requirement for class I MHC in CNS development and plasticity. Science 290, 2155–2159 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Neumann, H., Cavalié, A., Jenne, D. E. & Wekerle, H. Induction of MHC class I genes in neurons. Science 269, 549–552 (1995).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gate, D. et al. CD4+ T cells contribute to neurodegeneration in Lewy body dementia. Science 374, 868–874 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Codarri, L. et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 12, 560–567 (2011).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Galli, E. et al. GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis. Nat. Med. 25, 1290–1300 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Moalem, G. et al. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med. 5, 49–55 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Medzhitov, R. & Iwasaki, A. Exploring new perspectives in immunology. Cell 187, 2079–2094 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Baruch, K. et al. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology. Nat. Commun. 6, 7967 (2015).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Linnerbauer, M. et al. PD-L1 positive astrocytes attenuate inflammatory functions of PD-1 positive microglia in models of autoimmune neuroinflammation. Nat. Commun. 14, 5555 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gao, W. et al. Engineered T cell therapy for central nervous system injury. Nature 634, 693–701 (2024).

  • Linnerbauer, M., Wheeler, M. A. & Quintana, F. J. Astrocyte crosstalk in CNS inflammation. Neuron 108, 608–622 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lee, H.-G., Lee, J.-H., Flausino, L. E. & Quintana, F. J. Neuroinflammation: an astrocyte perspective. Sci. Transl. Med. 15, eadi7828 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fontana, A., Fierz, W. & Wekerle, H. Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 307, 273–276 (1984).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanmarco, L. M. et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature 590, 473–479 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito, M. et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565, 246–250 (2019).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kenison, J. E. et al. Tolerogenic nanoparticles suppress central nervous system inflammation. Proc. Natl Acad. Sci. USA 117, 32017–32028 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rojas, O. L. et al. Recirculating intestinal IgA-producing cells regulate neuroinflammation via IL-10. Cell 176, 610–624.e18 (2019). This work describes a unique immunoregulatory circuit mediated by IL-10-producing B cells that migrate from the gut to the CNS.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jordão, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, eaat7554 (2019).

    PubMed 
    MATH 

    Google Scholar
     

  • Shi, K. et al. Bone marrow hematopoiesis drives multiple sclerosis progression. Cell 185, 2234–2247 (2022).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Vainchtein, I. D. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359, 1269–1273 (2018). This study describes local neuroimmune cell circuits in the brain that influence behaviour.

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yun, S. P. et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat. Med. 24, 931–938 (2018).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wheeler, M. A. et al. Droplet-based forward genetic screening of astrocyte–microglia cross-talk. Science 379, 1023–1030 (2023). This work develops a screening platform to define and validate neuroimmune interactions at high throughput using CRISPR screens.

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, eabf1230 (2021). This study developed a single-cell method to profile neuroimmune contacts using viral tracing.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Komuczki, J. et al. Fate-mapping of GM-CSF expression identifies a discrete subset of inflammation-driving T helper cells regulated by cytokines IL-23 and IL-1β. Immunity 50, 1289–1304 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Mayo, L. et al. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat. Med. 20, 1147–1156 (2014).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kiss, M. G. et al. Interleukin-3 coordinates glial-peripheral immune crosstalk to incite multiple sclerosis. Immunity 56, 1502–1514 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • McAlpine, C. S. et al. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature 595, 701–706 (2021). This study describes the role of astrocyte production of the GM-CSF family cytokine IL-3 on the regulation of microglial responses, complementing previous findings on GM-CSF (Mayo et al., 2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • McNamara, N. B. et al. Microglia regulate central nervous system myelin growth and integrity. Nature 613, 120–129 (2023).

  • Stogsdill, J. A. et al. Pyramidal neuron subtype diversity governs microglia states in the neocortex. Nature 608, 750–756 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cserép, C. et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 367, 528–537 (2020).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nguyen, P. T. et al. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell 182, 388–403 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Favuzzi, E. et al. GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell 184, 4048–4063 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott-Hewitt, N. et al. Microglial-derived C1q integrates into neuronal ribonucleoprotein complexes and impacts protein homeostasis in the aging brain. Cell 187, 4193–4212 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mazzitelli, J. A. et al. Skull bone marrow channels as immune gateways to the central nervous system. Nat. Neurosci. 26, 2052–2062 (2023).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sammons, M. et al. Brain-body physiology: local, reflex, and central communication. Cell 187, 5877–5890 (2024).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tracey, K. J. Reflex control of immunity. Nat. Rev. Immunol. 9, 418–428 (2009).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Brain control of humoral immune responses amenable to behavioural modulation. Nature 581, 204–208 (2020). This study demonstrated that peripheral B cell responses are tuned by multiple brain circuits.

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Huang, S. et al. Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential. Cell 184, 441–459 (2021).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hanč, P. et al. Multimodal control of dendritic cell functions by nociceptors. Science 379, eabm5658 (2023).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hou, Y. et al. Neuropeptide signalling orchestrates T cell differentiation. Nature 635, 444–452 (2024).

  • Wallrapp, A. et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549, 351–356 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klose, C. S. N. et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549, 282–286 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cardoso, V. et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549, 277–281 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Poller, W. C. et al. Brain motor and fear circuits regulate leukocytes during acute stress. Nature 607, 578–584 (2022). This paper delineated how brain circuits mobilize multiple populations of immune cells in response to acute psychological stress.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hong, J. Y. et al. Long-term programming of CD8 T cell immunity by perinatal exposure to glucocorticoids. Cell 180, 847–861 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cathomas, F. et al. Circulating myeloid-derived MMP8 in stress susceptibility and depression. Nature 626, 1108–1115 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Menard, C. et al. Social stress induces neurovascular pathology promoting depression. Nat. Neurosci. 20, 1752–1760 (2017).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dion-Albert, L. et al. Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue. Nat. Commun. 13, 164 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qing, H. et al. Origin and function of stress-induced IL-6 in murine models. Cell 182, 372–387 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Barron, J. J. et al. Group 2 innate lymphoid cells promote inhibitory synapse development and social behavior. Science 386, eadi1025 (2024).

  • Koren, T. et al. Insular cortex neurons encode and retrieve specific immune responses. Cell 184, 5902–5915 (2021). This study established that cortical neurons encode and actuate peripheral immunity.

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jin, H., Li, M., Jeong, E., Castro-Martinez, F. & Zuker, C. S. A body–brain circuit that regulates body inflammatory responses. Nature 630, 695–703 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, Y. et al. Brainstem Dbh+ neurons control allergen-induced airway hyperreactivity. Nature 631, 601–609 (2024).

  • Lee, H.-G. et al. Disease-associated astrocyte epigenetic memory promotes CNS pathology. Nature 627, 865–872 (2024). This paper showed that in CNS inflammation, non-haematopoietic CNS glial cells exhibit a molecularly defined and retrievable immune memory.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Krausgruber, T. et al. Structural cells are key regulators of organ-specific immune responses. Nature 583, 296–302 (2020). This paper defines a brainstem nucleus that directly tunes peripheral inflammatory responses.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Schneider, K. M. et al. The enteric nervous system relays psychological stress to intestinal inflammation. Cell 186, 2823–2838.e20 (2023).

  • Deng, L., Gillis, J. E., Chiu, I. M. & Kaplan, D. H. Sensory neurons: an integrated component of innate immunity. Immunity 57, 815–831 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Cui, A. et al. Dictionary of immune responses to cytokines at single-cell resolution. Nature 625, 377–384 (2024).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cathomas, F. et al. Beyond the neuron: role of non-neuronal cells in stress disorders. Neuron 110, 1116–1138 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fan, K.-Q. et al. Stress-induced metabolic disorder in peripheral CD4+ T cells leads to anxiety-like behavior. Cell 179, 864–879 (2019).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Miyajima, M. et al. Metabolic shift induced by systemic activation of T cells in PD-1-deficient mice perturbs brain monoamines and emotional behavior. Nat. Immunol. 18, 1342–1352 (2017).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Choi, G. B. et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933–939 (2016). This study shows long-term changes in offspring behaviour in response to maternal TH17 cell activation.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alves de Lima, K. et al. Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat. Immunol. 21, 1421–1429 (2020).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Garré, J. M., Silva, H. M., Lafaille, J. J. & Yang, G. CX3CR1+ monocytes modulate learning and learning-dependent dendritic spine remodeling via TNF-α. Nat. Med. 23, 714–722 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thorp, E. B. et al. CCR2+ monocytes promote white matter injury and cognitive dysfunction after myocardial infarction. Brain Behav. Immun. 119, 818–835 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hsueh, B. et al. Cardiogenic control of affective behavioural state. Nature 615, 292–299 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wilk, C. M. et al. Circulating senescent myeloid cells infiltrate the brain and cause neurodegeneration in histiocytic disorders. Immunity 56, 2790–2802 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wohleb, E. S., Franklin, T., Iwata, M. & Duman, R. S. Integrating neuroimmune systems in the neurobiology of depression. Nat. Rev. Neurosci. 17, 497–511 (2016).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hodes, G. E., Kana, V., Menard, C., Merad, M. & Russo, S. J. Neuroimmune mechanisms of depression. Nat. Neurosci. 18, 1386–1393 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leng, L. et al. Menin deficiency leads to depressive-like behaviors in mice by modulating astrocyte-mediated neuroinflammation. Neuron 100, 551–563 (2018).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Filiano, A. J. et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535, 425–429 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Derecki, N. C. et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207, 1067–1080 (2010).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chao, C.-C. et al. Metabolic control of astrocyte pathogenic activity via cPLA2-MAVS. Cell 179, 1483–1498 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mascanfroni, I. D. et al. Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nat. Med. 21, 638–646 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanmarco, L. M. et al. Lactate limits CNS autoimmunity by stabilizing HIF-1α in dendritic cells. Nature 620, 881–889 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki, A. et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144, 810–823 (2011).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fünfschilling, U. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485, 517–521 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Florsheim, E. B. et al. Immune sensing of food allergens promotes avoidance behaviour. Nature 620, 643–650 (2023).

  • Plum, T. et al. Mast cells link immune sensing to antigen-avoidance behaviour. Nature 620, 634–642 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Osterhout, J. A. et al. A preoptic neuronal population controls fever and appetite during sickness. Nature 606, 937–944 (2022). This study, together with Ilanges et al. (2022) and Bin et al. (2023), defines important circuit-level conduits underlying sickness behaviour.

  • Ilanges, A. et al. Brainstem ADCYAP1+ neurons control multiple aspects of sickness behaviour. Nature 609, 761–771 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bin, N.-R. et al. An airway-to-brain sensory pathway mediates influenza-induced sickness. Nature 615, 660–667 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Xu, H. et al. The choroid plexus synergizes with immune cells during neuroinflammation. Cell 187, 4946–4963 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wohleb, E. S., Powell, N. D., Godbout, J. P. & Sheridan, J. F. Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J. Neurosci. 33, 13820–13833 (2013).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wild, C. P. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomarkers Prev. 14, 1847–1850 (2005).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Rappaport, S. M. & Smith, M. T. Environment and disease risks. Science 330, 460–461 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Vermeulen, R., Schymanski, E. L., Barabási, A.-L. & Miller, G. W. The exposome and health: where chemistry meets biology. Science 367, 392–396 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rothhammer, V. & Quintana, F. J. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 19, 184–197 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Gutiérrez-Vázquez, C. & Quintana, F. J. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity 48, 19–33 (2018).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sipes, N. S. et al. Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem. Res. Toxicol. 26, 878–895 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanmarco, L. M. et al. Identification of environmental factors that promote intestinal inflammation. Nature 611, 801–809 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wheeler, M. A. et al. Environmental control of astrocyte pathogenic activities in CNS inflammation. Cell 176, 581–596 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cohn, E. F. et al. Pervasive environmental chemicals impair oligodendrocyte development. Nat. Neurosci. 27, 836–845 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berer, K. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479, 538–541 (2011). This is a seminal study on the role of the intestinal commensal flora in the control of CNS autoimmunity.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fitzpatrick, Z. et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature 587, 472–476 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enamorado, M. et al. Immunity to the microbiota promotes sensory neuron regeneration. Cell 186, 607–620 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Odoardi, F. et al. T cells become licensed in the lung to enter the central nervous system. Nature 488, 675–679 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosang, L. et al. The lung microbiome regulates brain autoimmunity. Nature 603, 138–144 (2022). This is a pioneering study on the role of the lung commensal flora in the control of CNS autoimmunity.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kim, S. et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549, 528–532 (2017).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faraco, G. et al. Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nat. Neurosci. 21, 240–249 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Santisteban, M. M. et al. Meningeal interleukin-17-producing T cells mediate cognitive impairment in a mouse model of salt-sensitive hypertension. Nat. Neurosci. 27, 63–77 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Erny, D. et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab. 33, 2260–2276 (2021).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480 (2016).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dohnalová, L. et al. A microbiome-dependent gut–brain pathway regulates motivation for exercise. Nature 612, 739–747 (2022).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Stewart Campbell, A. et al. Safety and target engagement of an oral small-molecule sequestrant in adolescents with autism spectrum disorder: an open-label phase 1b/2a trial. Nat. Med. 28, 528–534 (2022).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Duscha, A. et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell 180, 1067–1080 (2020).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Scott, B. M. et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat. Med. 27, 1212–1222 (2021).

  • Grandner, M. A. & Fernandez, F.-X. The translational neuroscience of sleep: a contextual framework. Science 374, 568–573 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Farez, M. F. et al. Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell 162, 1338–1352 (2015).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ziegler, K. A. et al. Immune-mediated denervation of the pineal gland underlies sleep disturbance in cardiac disease. Science 381, 285–290 (2023).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sang, D. et al. Prolonged sleep deprivation induces a cytokine-storm-like syndrome in mammals. Cell 186, 5500–5516 (2023).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Latorre, D. et al. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature 562, 63–68 (2018).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bernard-Valnet, R. et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc. Natl Acad. Sci. USA 113, 10956–10961 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Davis, M. M., Tato, C. M. & Furman, D. Systems immunology: just getting started. Nat. Immunol. 18, 725–732 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armingol, E., Baghdassarian, H. M., & Lewis, N. E. The diversification of methods for studying cell–cell interactions and communication. Nat. Rev. Genet. 25, 381–400 (2024).

  • Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Saunders, A. et al. Ascertaining cells’ synaptic connections and RNA expression simultaneously with barcoded rabies virus libraries. Nat. Commun. 13, 6993 (2022).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sun, Y. et al. Brain-wide neuronal circuit connectome of human glioblastoma. Nature https://doi.org/10.1038/s41586-025-08634-7 (2025).

  • Mount, C. W., Yalçın, B., Cunliffe-Koehler, K., Sundaresh, S. & Monje, M. Monosynaptic tracing maps brain-wide afferent oligodendrocyte precursor cell connectivity. eLife 8, e49291 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saleeba, C., Dempsey, B., Le, S., Goodchild, A. & McMullan, S. A student’s guide to neural circuit tracing. Front. Neurosci. 13, 897 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, L. et al. BRICseq bridges brain-wide interregional connectivity to neural activity and gene expression in single animals. Cell 182, 177–188 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kebschull, J. M. et al. High-throughput mapping of single-neuron projections by sequencing of barcoded RNA. Neuron 91, 975–987 (2016).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wheeler, M. A. Interactions between immune cells recorded. Nature 627, 277–279 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Giladi, A. et al. Dissecting cellular crosstalk by sequencing physically interacting cells. Nat. Biotechnol. 38, 629–637 (2020). This paper describes a pioneering approach in delineating mechanisms of cell–cell communication, using enrichment of antibody-labelled cellular pairs.

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Cohen, M. et al. The interaction of CD4+ helper T cells with dendritic cells shapes the tumor microenvironment and immune checkpoint blockade response. Nat. Cancer 3, 303–317 (2022).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pasqual, G. et al. Monitoring T cell–dendritic cell interactions in vivo by intercellular enzymatic labelling. Nature 553, 496–500 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nakandakari-Higa, S. et al. Universal recording of immune cell interactions in vivo. Nature 627, 399–406 (2024). This important study used an innovative method to systematically define the physical contacts of immune cells.

  • Clark, I. C. et al. Identification of astrocyte regulators by nucleic acid cytometry. Nature 614, 326–333 (2023).

  • Clark, I. C. et al. HIV silencing and cell survival signatures in infected T cell reservoirs. Nature 614, 318–325 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kirschenbaum, D. et al. Time-resolved single-cell transcriptomics defines immune trajectories in glioblastoma. Cell 187, 149–165 (2024). This work used an innovative method to incorporate a temporal dimension into spatial transcriptomic data.

    CAS 
    PubMed 

    Google Scholar
     

  • Challis, R. C. et al. Adeno-associated virus toolkit to target diverse brain cells. Annu. Rev. Neurosci. 45, 447–469 (2022).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Huang, Q. et al. An AAV capsid reprogrammed to bind human transferrin receptor mediates brain-wide gene delivery. Science 384, 1220–1227 (2024).

  • Chen, X. et al. Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates. Nat. Commun. 14, 3345 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nyberg, W. A. et al. An evolved AAV variant enables efficient genetic engineering of murine T cells. Cell 186, 446–460 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Young, A. et al. Targeted evolution of adeno-associated virus capsids for systemic transgene delivery to microglia and tissue-resident macrophages. Proc. Natl Acad. Sci. USA 120, e2302997120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, R. et al. Directed evolution of adeno-associated virus for efficient gene delivery to microglia. Nat. Methods 19, 976–998 (2022).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, Q. et al. Multimodal charting of molecular and functional cell states via in situ electro-sequencing. Cell 186, 2002–2017 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zeng, H. et al. Spatially resolved single-cell translatomics at molecular resolution. Science 380, eadd3067 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russell, A. J. C. et al. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics. Nature 625, 101–109 (2024).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kang, H. J., Minamimoto, T., Wess, J. & Roth, B. L. Chemogenetics for cell-type-specific modulation of signalling and neuronal activity. Nat. Rev. Methods Primers 3, 93 (2023).

    CAS 

    Google Scholar
     

  • Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Marshel, J. H. et al. Cortical layer-specific critical dynamics triggering perception. Science 365, eaaw5202 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, R. et al. Deep brain optogenetics without intracranial surgery. Nat. Biotechnol. 39, 161–164 (2021).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gong, X. et al. An ultra-sensitive step-function opsin for minimally invasive optogenetic stimulation in mice and macaques. Neuron 107, 38–51 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sahasrabudhe, A. et al. Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits. Nat. Biotechnol. 42, 892–904 (2024).

  • Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Park, J. et al. Integrated platform for multiscale molecular imaging and phenotyping of the human brain. Science 384, eadh9979 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Renier, N. et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165, 1789–1802 (2016).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mai, H. et al. Whole-body cellular mapping in mouse using standard IgG antibodies. Nat. Biotechnol. 42, 617–627 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nudell, V. et al. HYBRiD: hydrogel-reinforced DISCO for clearing mammalian bodies. Nat. Methods 19, 479–485 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kirst, C. et al. Mapping the fine-scale organization and plasticity of the brain vasculature. Cell 180, 780–795 (2020).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sporns, O., Tononi, G. & Kötter, R. The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ayata, P. et al. Epigenetic regulation of brain region-specific microglias clearance activity. Nat. Neurosci. 21, 1049–1060 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments